
Reza Sharif Razavian
Motion Research Group,

Systems Design Engineering,

University of Waterloo,

Waterloo, ON N2L 3G1, Canada

e-mail: rsharifr@uwaterloo.ca

Naser Mehrabi
Motion Research Group,

Systems Design Engineering,

University of Waterloo,

Waterloo, ON N2L 3G1, Canada

e-mail: nmehrabi@uwaterloo.ca

John McPhee
Fellow ASME

Professor

Motion Research Group,

Systems Design Engineering,

University of Waterloo,

Waterloo, ON N2L 3G1, Canada

e-mail: mcphee@uwaterloo.ca

A Neuronal Model of Central
Pattern Generator to Account
for Natural Motion Variation
We have developed a simple mathematical model of the human motor control system,
which can generate periodic motions in a musculoskeletal arm. Our motor control model
is based on the idea of a central pattern generator (CPG), in which a small population of
neurons generates periodic limb motion. The CPG model produces the motion based on a
simple descending command—the desired frequency of motion. Furthermore, the CPG
model is implemented by a spiking neuron model; as a result of the stochasticity in the
neuron activities, the motion exhibits a certain level of variation similar to real human
motion. Finally, because of the simple structure of the CPG model, it can generate the
sophisticated muscle excitation commands much faster than optimization-based methods.
[DOI: 10.1115/1.4031086]

1 Introduction

A significant portion of the human nervous system is devoted to
sensorimotor integration. Human body motion is highly modulated
by the high centers of the central nervous system (CNS) such as
motor cortex and cerebellum; however, it is well-supported that
some rhythmic motions (e.g., during locomotion) originate from
the neural circuits within the spinal cord (see Refs. [1] and [2] for
reviews). These specialized neural circuits, usually called a CPG,
can generate rhythmic motoneuron activity without much need for
extensive descending commands from higher parts of the CNS.
Moreover, it has been shown that the generation of the rhythmic
activity can occur without the presence of either the sensory
feedback (deafferented) or descending command (spinalized/
decerebrated preparations).

CPG-excited motion is particularly interesting in a motor control
study from a theoretical perspective, as it can effectively address
the redundancy in human musculature; the high-dimensional actua-
tor space can be reduced to a low-dimensional control space, in
which the motion can be modulated by only a small number of
descending commands.

Previous mathematical studies of CPGs vary both in method
and scale. The simplest network that can generate an oscillating
motion is based on a half-center oscillator [3], in which two neu-
rons reciprocally inhibit each other. By adding feedback loops [4],
such a network is able to produce robust and controllable rhyth-
mic signals. This simple model, however, is not able to generate
sophisticated motoneuron patterns, as is observed in humans and
animals.

To improve the half-center oscillator models, a layered struc-
ture is proposed in Refs. [5] and [6], where one layer is responsi-
ble for the generation of stable rhythms, while the second layer
builds the bursting activities upon the rhythms. This architecture
allows for including extra flexibility in the rhythm generation and
in feedback modulation of motion.

In another approach, the wavelike body motions of a lamprey
and salamander are generated by employing a set of interacting
oscillators. In an early study [7], a series of neuronal oscillators

were used to successfully simulate various lamprey locomotion
speeds and turning patterns. This model was improved by includ-
ing feedback modulation [8] and more realistic neuron models [9].
Similarly, CPG models including interconnected oscillators have
been used to replicate swimming and trotting locomotion patterns
in salamander simulations [10] and in a salamander robot [11]. In
these salamander CPGs, the various locomotion patterns are cre-
ated by increasing the controller input (similar to increasing the
stimulation of the midbrain locomotor region). In a later study
[12], the effects of sensory feedback on the generation of different
salamander locomotion patterns were investigated.

In this article, we present a novel mathematical model of a CPG.
Our model benefits from the advantages of many of the previously
published articles. Our model employs a multilayer structure (simi-
lar to Refs. [5] and [6]) for better stability and modulability. It also
incorporates a number of oscillators (in the form of a Fourier series
[13]) to generate sophisticated signal patterns. Oscillators are easy
to construct with neuronal structures, and when combined, they are
versatile to generate any waveform.

Our CPG model is implemented with a leaky integrate-and-fire
spiking neuron model, which increases the fidelity of the model.
The synaptic weights in the neuron ensembles are calculated using
the neural engineering framework (NEF) [14,15]. This method
has shown outstanding potential in functional modeling of the
brain [14] and motor control system [16]. Additionally, due to the
inherent stochasticity of the neuron’s behavior, this approach will
result in natural variations in the response—a feature that is miss-
ing in other deterministic mathematical modeling approaches.

To show the potential of the developed CPG model, it is used to
control the periodic motion of a one degree-of-freedom (1DOF)
musculoskeletal forearm model [17]. We believe that the same
CPG structure, without the need for further development, can be
used to generate periodic muscle excitation patterns required in
multi-DOF musculoskeletal systems, such as human lower extrem-
ities during gait.

To summarize the contributions of this work, we have devel-
oped a new multilayer CPG structure, which can generate periodic
motions in a musculoskeletal arm model in real-time, and modu-
late the frequency (speed) of motion using a single descending
command. The novel architecture of the CPG model takes advant-
age of properties of neuronal modeling with the NEF (namely,
oscillatory patterns, signal summation, and interpolation), and is
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implemented with spiking neuron models for extra fidelity.
Finally, to the best of our knowledge, our CPG model is the only
motor control model that can generate humanlike motion varia-
tions through a biologically plausible mechanism (i.e., neuronal
modeling.)

This article is organized as follows: we first introduce our mus-
culoskeletal forearm model. Then, we present the CPG model
structure, which is followed by the details about the implementa-
tion with spiking neuron model. The parameter tuning of the CPG
model comes next. Finally, results and discussions conclude the
paper.

2 Dynamic Modeling

A 1DOF musculoskeletal forearm model is used to highlight
the features of our CPG model. The schematic of the forearm
model is shown in Fig. 1. As can be seen, the upper arm is
assumed to be fixed and the forearm rotates about an ideal revo-
lute joint at the elbow. The forearm is actuated by four muscle
groups: brachioradialis (BRD), biceps brachii (BIC), brachialis
(BRA), and triceps brachii (TRI). All these muscle groups are
flexors, except the TRI group, which is an extensor. This model
can capture the important flexion/extension dynamics of the
human arm (including muscle dynamics), without introducing
unnecessary challenges related to extra DOF.

A Hill-type muscle model is used to describe the muscle behav-
ior in this model (see Appendix A for details). It should be noted
that only the contractile element of the Hill muscle model is used
in this work. Since the motion in this work is relatively slow, the
contribution of tendon dynamics on the system is negligible [18].
Furthermore, including tendons in the model will increase the
stiffness of the differential equations, which increases the integra-
tion time of the simulation. As will be discussed in Sec. 5, the
controller is tuned through a large optimization problem, and a
long integration time has significant effect on convergence time of
the optimization routine. A model that includes tendon dynamics
will still be controllable by the framework presented in this paper,
but the optimization time will be much longer (a similar problem
that includes tendons is solved in Ref. [17]).

The elbow joint torque, Te, is calculated from the muscle forces
and their moment arms according to

Te ¼
X

j

Fjrj

j 2 fBRD;BIC;BRA;TRIg (1)

where Fj is the muscle force, and rj is the constant moment arm,
which is positive for flexors and negative for extensors. The mus-
cle parameters used in this model are given in Table 1. These
parameters are adopted from Ref. [19].

The forearm dynamics can then be written as

€h ¼ 1

I
Te �Wd sinðhÞ � Kd

_h
� �

(2)

The elbow angle, h, is measured from vertical and is zero when
the forearm is fully extended. In Eq. (2), I is the forearm/hand
moment of inertia (about elbow joint), and W is the forearm/hand
weight, which acts at the distance d from the elbow joint. The
damping coefficient (Kd ¼ 0:2 N �m s/rad, taken from Ref. [20])
is added to the elbow joint for more stable simulation. The arm
mass and inertia properties (Table 2) are calculated using anthro-
pometric data [21] for a 95 kg young Caucasian male.

3 CPG Model

The CPG-based motor control model presented here uses the
advantages of two approaches mentioned in the Introduction. This

CPG controller can generate sophisticated muscle activity patterns
by a linear combination of oscillators and is modeled in a layered
structure.

The framework presented here is applied to the 2D forearm
model, and is used to produce a frequency-controllable periodic
motion of the elbow flexion/extension, based on a single input.
The input to the CPG model resembles the low-dimensional
descending command from the higher centers in the CNS, and the
output is the high-dimensional motoneuron activities.

The schematic of the CPG controller is shown in Fig. 2. The
feedback loops in the figure can be used to modulate the muscle
excitation patterns at different levels of the controller. In this
work, however, we only focus on the feedforward part of the CPG
model.

The CPG model contains a layered structure. The first layer is
the pacemaker, which is responsible for generating the tempo for
muscle activations—how fast each cycle should be. The next
layer, the pattern generator, builds continuous and periodic muscle
excitation patterns (the melody) based on the rhythms of the
pacemaker.

3.1 The Pacemaker. The first layer of the CPG controller is
the pacemaker. In this model, the pacemaker is in the form of a
harmonic oscillator with two states

_x1 ¼ Dx2

_x2 ¼ �Dx1

(
(3)

In this oscillator, D is the tonic drive (see Fig. 2), which modu-
lates the frequency of oscillations. Increasing the value of the

Fig. 1 Schematic of the musculoskeletal forearm model

Table 1 Muscle parameters for the four muscle groups in the
2D forearm model

Parameter BRD BICa BRA TRIa

F0max
(N) 101 855 854 2518

LCE
0 (cm) 27 14 10 10

ap (deg) 5 10 15 15

PCSA (cm2) 3.08 26 26 76

ra (cm) 3 3.7 5.4 �2

aThe parameters for these muscles are averaged/summed across different
heads of the muscles.
bThe constant moment arm is the average value over the range of motion.
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drive, D, will increase the frequency. The modulation of the fre-
quency of the pacemaker introduces the ability to change the fre-
quency of forearm motion, assuming the pattern generator block
can generate proper patterns of muscle excitation.

3.2 The Pattern Generator. The pattern generator builds the
required muscle excitation patterns by employing a Fourier series
[13,17]. In this work, the fifth-order Fourier series of Eq. (4) is
used to generate arbitrary signals with the same period as the prin-
cipal harmonic of the pacemaker

u ¼ a0 þ
X5

i¼1

ai cosðiDtÞ þ bi sinðiDtÞ (4)

Higher harmonics in Eq. (4) can be generated using algebraic
functions of the principal harmonic, according to Eqs. (5)–(7)

First harmonic :
sinðDtÞ ¼ x1

cosðDtÞ ¼ x2

(
(5)

Second harmonic :
sinð2DtÞ ¼ 2x1x2

cosð2DtÞ ¼ 2x2
2 � 1

(
(6)

Third harmonic :
sinð3DtÞ ¼ 4x1x2

2 � x1

cosð3DtÞ ¼ 4x3
2 � 3x2

(

..

.
(7)

By changing the tonic drive, the frequency of the pacemaker
changes, and if the Fourier coefficients, ai and bi, are chosen prop-
erly for each muscle, the arm will follow the desired path and
with the desired frequency. Thus, it is crucial to use the right
Fourier coefficients for each frequency. The tuning of the Fourier
parameters is the subject of Sec. 5.

4 Implementation With Spiking Neurons

In the human nervous system, each neuron responds differently
to a certain stimulus. Each neuron has a certain threshold beyond
which it shows activity. The intensity of the neuron activity will

then increase with the intensity of the stimulus. The NEF [14,22]
takes advantage of this diversity and calculates the optimal synap-
tic weight, so that the weighted summation of all neuron activities
decodes a certain function of the stimulus. The neuron models in
the NEF are therefore populated with randomized parameters to
span the entire range of stimulus intensities. As an example of this
randomized diversity, Fig. 3(a) shows the response of 100 neurons
to a changing stimulus. In Fig. 3(b), the same ensemble of neurons
is use to calculate the square of the stimulus intensity, using the
synaptic weights found by the NEF. As can be seen in Fig. 3(b),
due to the inherent noise modeled within each neuron response,
the output signal is noisy. This randomness in neuron behavior
will result in motion variation, as will be discussed later. For more
information about the NEF, the reader is referred to Ref. [22].

Nemo [23] is a MATLAB-based library for NEF and is used to
implement the CPG controller with a network of spiking neurons.
The two layers of CPG controller are modeled by different ensem-
bles of neurons. The first layer, the pacemaker, is modeled by a
two-dimensional ensemble calculating the two oscillating states of
Eq. (3)—one dimension for each state, x1 and x2. The radius of
decoding (the outputs will have the values in this range) for the
pacemaker ensemble is 1 for both dimensions. To simulate the
oscillations, a feedback projection is used (see Fig. 4). Moreover,
as Nemo does not accept arbitrary initial conditions, a step func-
tion is used as another projection onto the pacemaker ensemble.
This steplike excitation shifts the neurons from their stable state
and initializes the oscillations. Thus, the dynamics of the pace-
maker ensemble can be summarized as

sps

_x1

_x2

( )
¼ �

x1

x2

( )
þ

1 n

�n 1

" #
x1

x2

( )zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{feedback input

þ
1�Hðt� 0:1Þ

0

( )zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{initialization input

¼
nx2 þ 1�Hðt� 0:1Þ

�nx1

( )
(8)

In the above equation, sps represents the postsynaptic time con-
stant (the time it takes for the neurons to react to the input stimula-
tion, set equal to 0.01 s). Hðt� 0:1Þ is a Heaviside step function,
which allows for the excitation of the oscillator for 0.1 s. Finally,
n is used to modulate the frequency of oscillation. The relation
between n and desired frequency, D, is found by trial-and-error
to be

n ¼ 4:76� 10�2D (9)

The two states of the pacemaker ensemble represent the princi-
pal harmonics of the motion. Higher harmonies are also generated
by the pacemaker ensemble, by using origins that decode the rela-
tions in Eq. (5).

All five harmonies are decoded in a 10� 1 vector and are pro-
jected onto four separate pattern generator ensembles to produce
the muscle excitation, u, for each muscle group. We have assumed
that the motoneuron activities are determined by the overall activ-
ity of all the neurons in a pattern generator ensemble. Therefore,
the excitation u is determined by the weighted summation of the
activities of all the neurons. These synaptic weights are optimally
determined by the NEF, so that the output represents the Fourier
series (4). The schematic of the connections between the neuron
populations is shown in Fig. 4. The termination in each pattern
generator ensemble has a transformation vector, ½T �1�10 contain-
ing the Fourier coefficients, that when multiplied by the vector of
harmonics will produce the Fourier series of Eq. (4).

The number of neurons in an ensemble is determined by the
complexity of the computations it has to perform. The pacemaker

Table 2 Forearm/hand properties in 2D forearm model

Property Symbol Value

Inertiaa I 0.152 kg m2

Weight W 20.80 N
Center of mass locationa d 0.179 m

aWith respect to elbow joint center.

Fig. 2 The layered structure of the CPG controller
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ensemble contains more neurons than the pattern generator
ensembles, since it needs to perform a much more complex math-
ematical calculation. The pacemaker solves the differential equa-
tions (8) and calculates the nonlinear equations of Eqs. (5)–(7).
The pattern generator ensembles, on the other hand, only calculate
the linear summation of the inputs (Eq. (4)), which is less compu-
tationally demanding and can be handled by a fewer number of
neurons. In our simulations, the pacemaker ensemble contains
2000 neurons, while each pattern generator ensemble contains
only 200 neurons. Since there are four pattern generator ensem-
bles (one per muscle), there are in total 2000þ 200 �4 ¼ 2800
neurons in this CPG model.

5 Model Parameter Tuning

The desired motion is a periodic flexion/extension of the fore-
arm. The simplicity of this motion allows for more transparent
introduction of our CPG model. The elbow angle profile of Fig. 5
is the reference motion, calculated from the average of 20 cycles
of the experimental trials. For different frequencies of motion, this
profile stretches or shrinks in time.

As mentioned in Sec. 3, because of the nonlinear dynamics of
the musculoskeletal system, following the desired forearm motion
at different frequencies requires different muscle excitation pat-
terns. This, in turn, means that a different set of Fourier coeffi-
cients should be used. Gentle response of the Fourier series to the
changes in the Fourier coefficients has been a strong motivation to
construct our CPG model in this layered structure. If the proper
Fourier coefficients for a number of desired frequencies are
known, we can stack them in a look-up table and then interpolate
the data to obtain satisfactory coefficients at an arbitrary desired
frequency.

To find the proper Fourier coefficients that generate the desired
forearm motion at a specific frequency, an optimization problem
can be solved. Various criteria have been used as the muscular
effort index in the optimizations, including metabolic energy
[24,25], muscle force/stress [26–28], and muscle activation/
excitation [29,30] (for a review, see Ref. [31]). In a recent study,
Sharif Shourijeh and McPhee [17] have shown that the global
parameterization approach that minimizes muscle activations
results in humanlike muscle activity patterns. Therefore, we have
used the same approach to find the Fourier coefficients. Instead of
the muscle activations, however, muscle excitation has been used
in the cost function. Using the independent variable (i.e., excita-
tions) in the optimization, instead of the dependent states (i.e.,
activation), improves the convergence time of the optimization
routine; due to the fast excitation/activation dynamics, the results
will be practically identical. The solution of the optimization
problem is, therefore, the set of Fourier coefficients, which gener-
ates the muscle excitation patterns required for following the
desired motion, at the specified frequency.

In this optimization problem, the Fourier parameters are found,
so that the sum of the cost functions (10) and (11) is minimized

J1 ¼ w1

1

Tf

1P
j PCSAj

X
j

PCSAj

ðTf

0

u2
j dt

� �
(10)

J2 ¼ w2

1

Tf

1

hmax

ðTf

0

ðh� hdesÞ2dt (11)

In other words

fai; big ¼ arg min J1 þ J2f g (12)

Fig. 3 (a) An example for the average firing rate of 100 neurons to a changing stimulus. (b) The
synaptic weight between the 100 neurons is optimally calculated, so that the weighted sum of
the neurons’ firing rate represents the square of the input stimulus.

Fig. 5 The reference elbow angle, hdes; three periods of motion
are shown

Fig. 4 Schematic of CPG controller implementation with spik-
ing neurons
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subject to the constraints

0 � uj � 1 j 2 fBRD;BIC;BRA;TRIg (13)

In the above relations, J1 is the physiological effort [17], while
J2 is the tracking error [32]. Tf is the final simulation time, which
is chosen to contain a number of cycles of the desired motion. uj

and PCSAj are muscle excitation and physiological cross section
area, respectively, for each muscle group (j 2 fBRD;BIC;BRA;
TRIg), and h is the elbow angle that is compared against the
desired trajectory, hdes. Finally, w1 and w2 are scalar weighting
factors calculated as

w1 ¼ 4:5T2
cyc (14)

w2 ¼
90

T2
cyc

(15)

where Tcyc is the period of one cycle of the motion. Note that w1

and w2 are chosen as the functions of Tcyc to balance the relative
strength of J1 and J2, and to obtain consistent results in terms of
motion tracking and efficiency. Slower motions are less intensive,
requiring lower muscle excitations. In contrast, the fast motion
with high acceleration requires significantly higher excitation lev-
els. Therefore, T2

cyc is chosen as the measure of the intensity of the
motion; slower motion (large Tcyc) will reduce the relative
importance of tracking and increase the importance of efficiency.
Opposite effects are obtained for fast motions, where tracking
becomes relatively more important.

For a number of desired frequencies, the corresponding
optimization problem is solved offline (see the top part of Fig. 6).
Then, these optimal coefficients are stacked in a look-up table.
For the fast online control of an arbitrary motion frequency, the
data in the look-up table are interpolated to find the Fourier
coefficients at the desired frequency. Figure 7 shows the
frequency-dependence of the Fourier coefficients for the BRD
muscle (numeric data for all muscles are given in Table 3 of
Appendix B). These data will be interpolated to find proper coeffi-
cients for an arbitrary frequency. Using the interpolated data and
the harmonics of the pacemaker, the muscle excitation that gener-
ates the desired motion is produced online.

6 Data Collection

To evaluate the model behavior, a subject (24 yr old Caucasian
male) performed periodic elbow flexion/extension in the sagittal
plane with two speeds: the fast and slow motions, respectively,
had periods of T¼ 1.5 s and T¼ 3.0 s. To make sure that the sub-
ject performed the motion with the required speed, he was asked
to synchronize his motion with a visual cue.

An optical motion tracking system with three active markers
(Optotrak Certus, Northern Digital, Inc., Waterloo, ON, Canada)
was used to collect the kinematic data. The markers were placed
on bony landmarks: acromion (AC), lateral epicondyle (LE), and
radial styloid (RS). The elbow angle was then calculated as the
angle between the vectors connecting AC to LE and LE to RS
(see Fig. 1 for the schematic) as

h ¼ arccos

�����������!
LE� AC
� �

�
�����������!
RS� LE
� �

��������������!LE� AC
�����������������!RS� LE

���
0
B@

1
CA (16)

Fig. 6 The optimization framework to find the Fourier series parameters, which
will be used in the online generation of muscle excitation signals

Fig. 7 Optimal Fourier series coefficients for BRD muscle at
different periods of motion
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Electromyographic (EMG) data from three muscles (BRD, biceps,
and long head of triceps) were also collected. BRA is a relatively
deep muscle and is difficult to measure by surface EMG electrodes.
Thus, no EMG data for this muscle were collected. The EMGs
were collected at 4000 Hz, high-pass filtered, full-wave rectified,
and then, low-pass filtered (linear envelop) and normalized to the
maximum voluntary contraction level.

7 Results

Due to the indeterminacy in neuron behavior, random noise,
and decoding error (properties of neural ensembles that are

accounted for in the NEF), the output of the neuron ensembles
shows variation (notice the noiselike variations in muscle exci-
tation pattern of Fig. 8). Therefore, if the output of the net-
work of neurons is used to drive the musculoskeletal system,
the resulting motion will experience variation from one trial to
another.

For both the experiment and the simulations, 20 cycles of
motion are captured. The duration of each cycle is normalized
from 0% to 100% of cycle. Next, the mean and standard deviation
of the data are calculated and shown in Fig. 8. The figure com-
pares the model behavior against the experimental data for two
different motion frequencies.

Fig. 8 Comparison of the experimental data with the CPG model response. Left column com-
pares the muscle excitation patterns in one cycle with the average experimental EMGs. Right
column compares the resulting motion between the model and experiments. The results are
shown for two speeds of motion: (a) fast motion, T 5 1.5 s and (b) slow motion, T 5 3 s.
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The simulation results and the experimental data show similar-
ities. For both the slow and the fast motions, the variation in
motion (the standard deviation of motion shown in gray shade in
Fig. 8) is similar between the simulation and the experiments. The
average motion, although similar, shows slight differences
between the simulation and the experiment.

Natural dynamics of the forearm is an important source of the
difference in the elbow angle trajectories. The speed of the fore-
arm in a free fall from a flexed position to an extended one under
no-activation condition is closer to the speed of the fast motion
than the slow motion. Therefore, following the elbow angle trajec-
tory of fast motion is dynamically an easer task. The optimization
process makes the compromise between the closeness of the
motions and physiological effort, which results in a steeper angle
trajectory in the simulation of the slow motion, when compared to
that of the fast motion.

The muscle activities (neural excitation levels in the simulation
and EMGs in the experiments) have qualitatively similar patterns.
However, there are inconsistencies especially in the slower
motion (Fig. 8(b)). For example, triceps is silent in the simula-
tions, but shows significant EMG activity. One possible explana-
tion for this activity is the role of the long head of triceps in
stabilization of the upper arm. In the simulations, the upper arm
was assumed to be fixed, but we had asked the subject to hold the
upper arm stationary, which requires muscle activity. Other than
that, a general agreement can be observed between the muscle
excitation patterns in the simulations and EMG patterns in the
experimental data.

8 Discussion

The motor control model presented in this article is based on
the feedforward aspect of a CPG. The structure of the CPG model
allows for easy change in frequency of a rhythmic motion. Since
the tuning of the CPG model is based on multiple optimization
problems, the output of the motor control model—muscle excita-
tions—are essentially optimal (or close to optimal in interpolated
points). Furthermore, since the CPG model interpolates the precal-
culated optimal data, it can generate the near-optimal muscle exci-
tations very quickly—orders of magnitude faster than solving the
optimization problem.

Although this CPG framework has been developed for the con-
trol of a 1DOF forearm model, its structure is independent of the
motion, the number of muscles, or the DOF. Thus, it is readily
applicable to models with more DOF and more muscles. This
model is an excellent candidate for the crude control of gait; how-
ever, the feedforward nature of this CPG model may result in an
unstable response in more complex systems. Thus, to simulate a
complex motion such as gait, including feedback loops (shown in
Fig. 2) seems to be necessary. The feedback modulation can hap-
pen at three stages: at the pacemaker layer (to accelerate or delay
the harmonics), at the pattern generator layer (momentarily pro-
duce different patterns, e.g., another speed to catch up with a
delayed motion), or at the motoneuron level (e.g., monosynaptic
reflex loops).

An important contribution of this research is the implementa-
tion of the CPG model with spiking neurons. The architecture of
the CPG model suits the structure of NEF very well. An oscillator
can easily be built by a relatively small number of neurons, and
the linear combination of the oscillator outputs is the strength of
the NEF approach.

It should be noted that successful implementation of the CPG
model with the neurons does not necessarily imply the existence
of such a structure in humans; however, it may suggest the possi-
bility of such an architecture in the nervous system for the control
of frequency-modulated rhythmic motions. The only tools that
were available to us to evaluate our model are at the behavioral
level, i.e., the actuator effort (muscle activities) and the resulting
motion. The results presented in this paper show that the model is
able to replicate the human at the behavior level. Additionally,

recent observations at the neuronal level [33] prove the existence
of oscillatory neuron activities during arm motion. Putting the
pieces together, one may think about the plausibility of the CPG
architecture presented here.

The last important feature of the proposed CPG model is its
ability to produce a certain level of variation in the resulting
motion, similar to the variation in human movements. The source
of the variation in our model comes from the inherent stochastic-
ity in the neurons’ behavior—the same mechanism as in the
human motor control system. This stochasticity results in a realis-
tic motor noise which leads to motion variation. To the best of our
knowledge, our CPG model is the only published approach that
could generate a motion with such variability in a musculoskeletal
model and through a biologically plausible methodology.

It should be noted that the model is entirely feedforward. In our
human experiments, however, proprioceptive and visual feedback
could indeed affect the control performance. Further analysis on
the effects of sensory feedback on the control performance of
human motion (both in simulation and experiments) is required.

Finally, one specific area that may benefit from motor control
models is clinical rehabilitation. It has been shown that employing
functional electrical stimulation (FES) during physical therapy
can improve the patient’s movement scores [34,35]. The current
control of FES devices is rudimentary and usually done manually
by a therapist. Using fast (real-time) motor control models similar
to our CPG model, it is possible to generate muscle activity
patterns that can be used to drive the FES device, so that the mus-
cle activities and the resulting motion resemble natural body
behavior.

9 Conclusions

In this article, we presented a mathematical model of a motor
control system based on the idea of a CPG. We used this model to
control rhythmic motion of the forearm. The results showed that
our CPG model can produce periodic motion by activating multi-
ple muscles in an optimal way. For this purpose, the CPG model
performs a dimensional transformation; it receives a one-
dimensional input command (specifying the desired speed of
motion) and generates the multidimensional muscle excitation
signals. The multilayer structure of the model allows for fast and
robust generation of muscle excitation signals and simple
frequency control.

The implementation of the CPG model with spiking neurons
introduced indeterminacy in the motor control model, which
resulted in the same level of motion variation as in the experimen-
tal data. The similarity between the simulation results and the
experimental data suggests the plausibility of our control mecha-
nism. However, further experimental investigation is necessary to
make stronger arguments.
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Nomenclature

a ¼ muscle activation level
A ¼ corrected activation level in Hill muscle model
Af ¼ shape factor in Hill muscle model

B ¼ Hill muscle model auxiliary parameter
C ¼ Hill muscle model auxiliary parameter
d ¼ distance from elbow joint to forearm center of mass
D ¼ tonic drive in CPG model
F ¼ muscle force
f̂ ¼ normalized maximum muscle force during elongation
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fl ¼ muscle force–length relation
fv ¼ muscle force–velocity relation

F0max
¼ maximum isometric muscle force

H ¼ Heaviside step function
I ¼ forearm moment of inertia

Kd ¼ damping coefficient at elbow joint

LCE ¼ muscle contractile element length

LCE
0 ¼ optimal muscle length

PCSA ¼ muscle physiological cross section area
r ¼ muscle moment arm
T ¼ presynaptic transformation vector
ta ¼ muscle activation time constant
td ¼ muscle deactivation time constant
t1 ¼ activation/excitation time constant
t2 ¼ activation/excitation time constant
Te ¼ elbow joint torque
Tf ¼ simulation final time

Tcyc ¼ period of one cycle of the motion
u ¼ muscle neural excitation

VCE ¼ muscle contractile element shortening velocity

VCE
max ¼ maximum contractile element shortening velocity

w ¼ weighting factor
W ¼ forearm weight
ai ¼ Fourier series coefficients
aP ¼ muscle pennation angle

bi ¼ Fourier series coefficients
c ¼ shape factor in Hill muscle model

n ¼ frequency modulator in CPG model
sps ¼ postsynaptic time constant

Appendix A: Muscle Model

Since the interest of this research is in control applications, the
muscle model used here is a forward model, i.e., the input of
the model is the neural excitation and its output is muscle force.
The muscle force is a function of its length and velocity, as well
as the activation level [36]. The force–length dependency is given
in the following equation:

fl ¼ e

�
LCE

LCE
0

� �2

c

0
BB@

1
CCA

(A1)

In this relation, LCE is the muscle length, LCE
0 is the optimal

muscle length (at which maximum force can be produced), and c
is a shape factor (assumed to be 0.45).

The force–velocity relation is according to

fv ¼

VCE

VCE
maxLCE

0

þ AVCE
max

�VCE

VCE
maxLCE

0 Af
þ AVCE

max

VCE � 0

VCEBf̂

VCE
maxLCE

0

þ ACVCE
max

VCEB

VCE
maxLCE

0

þ ACVCE
max

VCE > 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(A2)

where Af is a shape factor, f̂ is the normalized maximum muscle
force during elongation (adopted to be 1.4), and VCE

max is the nor-
malized maximum muscle velocity (adopted to be 10). A, B, and
C are parameters defined below:

A ¼ 0:25þ 0:75a (A3)

B ¼ 2þ 2

Af
(A4)

C ¼ f̂ � 1 (A5)

In the above relations, a is the muscle activation level, which is
calculated from neural excitation, u, according to Ref. [37] as

da

dt
¼ ðu� aÞðt1uþ t2Þ (A6)

with t1 and t2 defined according to

t2 ¼
1

td
(A7)

t1 ¼
1

ta � t2

(A8)

The activation time constant, ta, and the deactivation time con-
stant, td, are set to 50 and 15 ms, respectively, from Ref. [37].

Knowing the muscle length and the muscle velocity, the muscle
force can be calculated according to

F ¼ aflfvF0max
cosðaPÞ (A9)

where F0max
is the maximum isometric muscle force.

Appendix B: Fourier Coefficient Values

Table 3 The optimal Fourier coefficients for the fast and slow motions

Motion period¼ 1.5 s Motion period¼ 3.0 s

BRD BIC BRA TRI BRD BIC BRA TRI

a0 0.0465 0.1019 0.0931 0.0020 0.0553 0.0794 0.0507 �0.0027
a1 0.0756 0.1310 �0.0132 �0.0012 �0.0361 �0.0355 �0.0031 �0.0005
a2 0.0419 0.0413 �0.0956 0.0013 �0.0084 �0.0007 �0.0078 0.0037
a3 �0.0075 �0.0311 0.0080 0.0056 �0.0033 0.0097 0.0226 �0.0020
a4 �0.0132 �0.0089 0.0220 �0.0033 �0.0102 �0.0202 �0.0172 0.0034
a5 0.0082 0.0092 0.0047 �0.0022 0.0021 0.0048 0.0109 �0.0037
b1 �0.0013 �0.1019 0.0818 �0.0007 �0.0107 �0.0353 0.0493 0.0013
b2 0.0028 �0.1106 0.0487 0.0054 �0.0241 �0.0051 �0.0118 0.0037
b3 0.0105 �0.0576 �0.0597 0.0041 0.0130 0.0270 �0.0004 0.0033
b4 0.0110 0.0036 �0.0296 �0.0044 �0.0126 �0.0228 0.0081 0.0032
b5 0.0005 0.0040 0.0253 0.0077 0.0251 0.0539 �0.0092 �0.0018
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