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Robots are becoming a popular means of rehabilitation since they can decrease

the laborious work of a therapist, and associated costs, and provide well-controlled

repeatable tasks. Many researchers have postulated that human motor control can be

mathematically represented using optimal control theories, whereby some cost function

is effectively maximized or minimized. However, such abilities are compromised in stroke

patients. In this study, to promote rehabilitation of the stroke patient, a rehabilitation robot

has been developed using optimal control theory. Despite numerous studies of control

strategies for rehabilitation, there is a limited number of rehabilitation robots using optimal

control theory. The main idea of this work is to show that impedance control gains cannot

be kept constant for optimal performance of the robot using a feedback linearization

approach. Hence, a general method for the real-time and optimal impedance control of

an end-effector-based rehabilitation robot is proposed. The controller is developed for

a 2 degree-of-freedom upper extremity stroke rehabilitation robot, and compared to a

feedback linearization approach that uses the standard optimal impedance derived from

covariance propagation equations. The newmethod will assign optimal impedance gains

at each configuration of the robot while performing a rehabilitation task. The proposed

controller is a linear quadratic regulator mapped from the operational space to the joint

space. Parameters of the two controllers have been tuned using a unified biomechatronic

model of the human and robot. The performances of the controllers were compared

while operating the robot under four conditions of human movements (impaired, healthy,

delayed, and time-advanced) along a reference trajectory, both in simulations and

experiments. Despite the idealized and approximate nature of the human-robot model,

the proposed controller worked well in experiments. Simulation and experimental results

with the two controllers showed that, compared to the standard optimal controller,

the rehabilitation system with the proposed optimal controller is assisting more in the

active-assist therapy while resisting in active-constrained case. Furthermore, in passive

therapy, the proposed optimal controller maintains the position error and interaction

forces in safer regions. This is the result of updating the impedance in the operational

space using a linear time-variant impedance model.

Keywords: optimal impedance control, linear quadratic regulator, operational space, rehabilitationmanipulandum,

human-robot interaction, stroke rehabilitation
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1. INTRODUCTION

1.1. Motivation
Upper extremity motor impairments are common among post-
stroke patients. If the rehabilitation therapy is stimulating and
intense, it will be effective in treatment of disabilities (Richards
and Malouin, 2015). Thus, upper extremity rehabilitation robots
including roboticmanipulanda1 (“InMotionArm” and “ReoGo”)
and robotic exoskeletons (“ArmeoPower,” and “ArmeoSpring”)
have been commercially introduced to the clinical setting
(Maciejasz et al., 2014; Proietti et al., 2016). Although, in
some studies, advantages of these robots over traditional
therapy methods are minor (Brewer et al., 2007; Wisneski
and Johnson, 2007; Lo et al., 2010; Mazzoleni et al., 2013;
Maciejasz et al., 2014), their use cannot be ignored since they
can provide well-controlled repeatable tasks, progress evaluation
measurements and entertaining user-interfaces (Reinkensmeyer,
2009; Kowalczewski and Prochazka, 2011).

When stroke management is supported by effective care,
rehabilitation costs can be substantially reduced (Krueger et al.,
2012). Effective stroke care includes rapid assessment and
rehabilitation with efficient outcomes in physical and functional
recovery (Hebert et al., 2016). Efficient physical recovery is a
qualitative measure, and a healthy subject is assumed to have an
efficient physical activity level. Hence, if a stroke rehabilitation
approach can improve the physical activity of a stroke patient to
the level of a healthy subject, the rehabilitation can be considered
effective, i.e., it cannot do any better.

Studies have shown that a human interacts with the
environment while minimizing an error and effort or, in general,
a cost function (Todorov and Jordan, 2002; Franklin et al.,
2008). In other words, the human’s central nervous system
(CNS) optimally controls human interaction. In rehabilitation
therapy, there is an interaction between the stroke patient and
a therapist or robot (or in general, an environment). To promote
effective therapy, if the stroke patient’s CNS cannot maintain the
optimality goal, this internal optimal control problem should be
solved externally with the aid of assistive devices (Jarrassé et al.,
2012). Thus, we assume that the use of optimal control methods
in rehabilitation robotics is well-suited to assisting an impaired
CNS. This assumption is consistent with previous studies, such as
Hunt et al. (1999) who used optimal control theory in a feedback
balance control mechanism to maintain standing of paraplegic
subjects, Emken et al. (2005) who considered rehabilitation
robot training as an optimization problem and designed an
optimal controller for assist-as-needed (active-assisted) therapy,
Ibarra et al. (2014) and Ibarra et al. (2015) who developed an
optimal controller for ankle rehabilitation, Mombaur (2016) who
uses optimal control theory to predict natural (healthy human)
movement and improve the device performance in rehabilitation
technologies, Wang et al. (2017) who used optimal control to
maintain patient’s safety and comfort during elbow rehabilitation,
and Corra et al. (2017) who implemented optimal control to
adjust the gains of a controller for arm rehabilitation.

1End-effector-based rehabilitation robots

1.2. Control Strategies in Rehabilitation
Robotics
Control strategies for rehabilitation robots can be divided into
two general subgroups: (1) High-level control scenarios for

stimulating neural plasticity, and (2) Low-level control scenarios
to implement high-level scenarios (Maciejasz et al., 2014). High-
level control scenarios include: assistive, corrective (coaching)
and resistive (challenge-based) control modes. Among these

modes, assistive control is the core element in post-stroke
rehabilitation therapy. In assistive mode, three types of low-level
control scenarios are implemented on these robots: (1) Passive

control, (2) Triggered passive control, (3) Partially assistive
control. Passive trajectory tracking and impedance-based control

methods, which are types of passive and partially assistive control
scenarios, respectively, are widely used in these robots (Maciejasz

et al., 2014; Proietti et al., 2016).
In robotic rehabilitation, because of physical interaction of

the patient with a mechanical device, safety is a fundamental
element in the design of a low-level control scenario. Thus,
impedance-based control scenarios are more applicable for

robotic rehabilitation (Marchal-Crespo and Reinkensmeyer,
2009; Maciejasz et al., 2014; Proietti et al., 2016), since
conventional position/force control scenarios (passive trajectory
tracking) do not consider dynamic interaction of the human-
robot system (Hogan, 1985). Furthermore, assist-as-needed

therapy, which encourages voluntary participation of the
patient, is implementable through the impedance-based control
scenarios.

In impedance-based control, the amount of
assistance/resistance (i.e., compliance) can be adjusted by

controlling the impedance gains. However, in the presence of
a variable admittance environment (i.e., different patients) or
different trajectories (i.e., robot configurations), the interaction
force and configuration will exacerbate inefficiency of the

controller with non-optimal gains. For example, a resistive-
capacitive impedance control with therapist-adjustable constant
stiffness and damping ratios is implemented in the upper
extremity rehabilitation manipulandum from the Toronto

Rehabilitation Institute (TRI) and Quanser Consulting Inc., but
these gains cannot be adjusted optimally using trial and error by

the therapist (Huq et al., 2012).
Besides other methods of partially assistive control (e.g.,

attractive force-field control, model-based assistance, learning-
based assistance, counter-balance-based assistance, and

performance-based adaptive control), adaptive and optimal
forms of impedance control have been developed to deal

with variable admittance environments. Hussain et al. (2013)
used an adaptive impedance control for patient-cooperative
therapy of a lower-limb exoskeleton, and they verified the
controller performance using an experimental setup. In
more recent studies, optimal impedance controls for an

exoskeleton gait trainer and elbow rehabilitation robot were
developed (Dos Santos and Siqueira, 2016; Wang et al., 2017).
The proposed methods were implemented in a computer
simulation, and the real-time performance of the controllers
was not discussed. In an exoskeleton, the impedance control
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is defined in the joint space, while in a manipulandum,
the impedance model is in the operational space. Thus, the
controllers developed for exoskeletons are not suitable for
a manipulandum. Furthermore, exoskeleton controllers are
developed for some sort of predefined rhythmic motions and
they are not implementable for random reaching movements.
Beside recent studies on exoskeletons, Maldonado et al. (2015)
used stiffness-based tuning for an adaptive impedance control
of an upper extremity manipulandum; the method was verified
using computer simulations only and its real-time capabilities
were not mentioned.

In some studies, to improve impedance control performance,
the compliance has been controlled by an outer-loop force
control (Erol and Sarkar, 2007; Siciliano et al., 2009; Ghannadi
et al., 2014a). Depending on the controller structure and use of
series elastic actuators, the compliance term can be controlled
by an inner-loop force control in the presence of an outer-
loop impedance control. For example, Perez-Ibarra et al. (2017)
used an H-infinity force control to implement this approach.
This hybrid impedance-force controller can be implemented by
different methods such as weighted sum (Moughamir et al., 2005)
or robust Markovian approach (Jutinico et al., 2017). However,
this method only controls the compliance (i.e., interaction force)
term, and the impedance gains are not optimal.

In a recent study, to select optimal target impedance for
a lower limb exoskeleton, a method for estimating human
admittance using particle swarm optimization was proposed
(Taherifar et al., 2017). Overall, a general solution for an
optimal impedance problem can be obtained with optimization
techniques (i.e., an optimal control approach). Such techniques
can adapt to variable admittance environments and different
robot configurations. However, real-time control of the system
limits the utilizable non-linear optimization methods. Ding et al.
(2010) used a musculoskeletal human model (without including
muscle dynamics) together with surface elecromyography
(sEMG) signals to implement model-based assistance control on
a rehabilitation exoskeleton. In Ghannadi et al. (2017a), we used
a nonlinear model-predictive approach to control human-robot
interaction in an upper extremity manipulandum. The method
was verified using computer simulation, but experimental tests
were not performed because of inefficient computation for real-
time implementation.

Learning-based methods can also be used to evaluate the
optimal impedance gains (Ge et al., 2014; Modares et al., 2016).
Ge et al. (2014) implemented an adaptive linear quadratic
regulator (LQR) to estimate the impedance gains, and Modares
et al. (2016) used reinforcement learning to solve an LQR
problem and achieve optimal impedance gains. However, the
validity of the proposed methods was verified using simulation
studies, and real-time implementation was not discussed. Other
than LQR, H-infinity control approaches can be used to achieve
optimal performance. In Kim et al. (2015), an H-infinity
impedance control is implemented for an upper extremity
exoskeleton. Compared to an LQR controller, the H-infinity
controller is more robust because it can handle uncertainties in
the impedance model. Design of an H-infinity controller depends
on the selection of a weighting function, whereas in an LQR

control, the optimal state feedback gain matrix is favorable.
Thus, initial design of an H-infinity approach may take more
effort than an LQR controller. Furthermore, H-infinity may
have large numerical variations that require increased numerical
precision, thereby increasing the computation cost for real-time
implementation (Glover and Packard, 2017).

Since multi-link manipulanda are controlled in the joint
space to achieve the desired impedance at the end-effector in
the operational space, the optimal impedance gains should be
assigned to the different robot configurations. For different
configurations, the manipulability ellipsoid in robotics is
introduced to determine the easiest manipulation direction
(Yamashita, 2014). Thus, a method is required to optimally
change the impedance gains based on the robot’s manipulability
ellipsoid. Hogan (2017) proposed an optimal impedance control
for a one-dimensional system, the standard optimal impedance
control (SOIC), which minimizes an cost function with position
and force penalty. This problem was solved using covariance
propagation equations. To the knowledge of the authors, there is
no other optimal impedance control approach that has resolved
different robot configuration problem independently.

1.3. Research Objective
The control input for a conventional impedance control using
nonlinear feedback linearization is in terms of the interaction
force, which is defined based on the impedance model with time-
invariant gains (see Appendix C). There is a trade-off between
tracking accuracy and interaction force in the operational
space, and increasing one of them may decrease the other.
An impedance model (i.e., gains) can regulate this trade-off
efficiently if they are adjusted optimally for different robot
configurations. Tuning this trade-off is important since this
can help the patient to safely (i.e., with an optimally safe-
zoned interaction force) follow a desired trajectory with optimal
accuracy. As discussed in section 1.2, different studies have
tried to provide the best trade-off in robotic rehabilitation.
However, there is a lack of research in the design of real-
time optimal impedance control for different configurations
of rehabilitation manipulanda. Furthermore, previous low-
level controls of rehabilitation manipulanda have not included
human-robot interactions for the adjustment of the robot
controller.

To find optimal impedance gains, we restate the problem
definition using optimal control theory: the best trade-off
between tracking error and interaction force in the operational
space can be revisited as finding an optimal control law that
minimizes the tracking and effort error in the operational
space. If this control law can satisfy the impedance model
with time-variant gains, optimal target impedance will be
achieved because these gains are the resulting optimal solution.
The objective of this work is to design a general real-time
optimal impedance control for rehabilitation manipulanda. This
controller is designed to reduce therapist intervention (with
fewer gain adjustments) and improve the quality of therapy
in terms of safety (less interaction force based on robot
manipulability) and rehabilitation (optimal tracking).
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In our previous study, we presented an optimal impedance
control (OIC) for an upper extremity stroke rehabilitation robot
(Ghannadi and McPhee, 2015); adjustment and performance-
evaluation of the controller were done by simulating the
robot interacting with a musculoskeletal upper extremity model
(Ghannadi et al., 2014b). The current paper is an extension
to our previous study. Here, a general method that optimally
adjusts impedance gains for variable robot configurations is
developed and tuned by simulating the human-robot system.
The proof that justifies the existence of a linear time
variant (LTV) impedance model is provided. The controller is
implemented on a Quanser Consulting Inc./TRI robot. Then,
the performance of the controller in terms of interaction
force and tracking accuracy is evaluated and compared to the
SOIC (Hogan, 2017) through simulations and experiments.
In experiments, a complete dynamic model of the robot
including joint and end-effector frictions, and joint stiffness are
considered.

This paper is organized as follows. First, in the section 2,
the modeling procedure and controller design are presented.
Second, in the section 3, simulation and experiment descriptions
and assessment criteria are provided. Next, in the section 4,
OIC simulation and experimental results are compared to SOIC.
Finally, in the section 5, contributions and future work are
presented.

2. MODELING AND CONTROL

In this section, first, the human-robot system model (which
is used in a model-in-loop simulation) is described. Next, the
proposed controller design is discussed.

2.1. Model Development
The upper extremity stroke rehabilitation robot is a 2 degree-
of-freedom (DOF) parallelogram arm that moves the hand in
the horizontal plane to perform reaching movements for therapy
(Figure 1B). This robot is driven by two DC motors that share
the same axis of rotation, and are connected to the 2 DOF arm
through disc and timing belt mechanisms. Since the proposed
controller is particularly suited for backdrivable robots, the
simulation model of the rehabilitation robot is assumed to have
negligible frictional forces so that the robot can be backdriven.
Hence, it is modeled as a frictionless planar parallelogram linkage
in the MapleSimTM software package.

Themusculoskeletal arm is considered a planar 2 DOF linkage
with 19 muscles lumped in 6 muscle groups (Ghannadi et al.,
2014b) (Figure 1A). In this model, upper extremity tendons
were treated as rigid elements2, and the passive elements of
the arm muscles were assumed to have less contribution than
the active elements in muscle forces. Hence, the contractile
element of the Hill-type muscle model is used to model
muscle dynamics, and forward static optimization (Ghannadi

2The compliance of tendon is proportional to its slack length. Thus, a tendon is

compliant if its normalized slack length is large (≥ 10), and it is very stiff when it

is equal to 1 (Zajac, 1989). For most muscles in the upper extremity this value is

around 1; hence, the stiff tendon assumption seems to be valid.

et al., 2014b) is implemented to solve the muscle force sharing
problem while tracking the desired curvilinear path (Zadravec
and Matjačić, 2013) (Figure 1A) with minimum jerk and a bell-
shaped tangential speed (Flash and Hogan, 1985) under robot
operation. This musculoskeletal arm is also developed in the
MapleSimTM software package.

These two models are integrated in MapleSimTM and
connected to each other by a free rotational revolute joint with a
force sensor. There are eight inputs to the human-robot system
consisting of two robot motor torque inputs (TR1,2 ) and six
muscle activations (a1..6). In this system, the number of outputs
is six, where two are from motor encoders (q1,2), two are from
the force sensor (FextZ,X ), and two are the musculoskeletal model
joint angles (θ1,2).

In contrast to admittance control, impedance control can
be used for backdrivable systems. Thus, for implementing the
proposed optimal controller, we assume that the friction is
negligible so that the robot can be backdriven. In simulations,
the robot model has no friction and the musculoskeletal model
has only approximate parameters for the muscles and inertial
properties; thus, we do not expect a close quantitative match
between simulation and experimental results. Nevertheless, the
model will be effective for the design and tuning of a feedback
controller if a good qualitative match between simulation and
experimental results is achieved.

2.2. Optimal Control Method
In an optimal control structure, it is desired to carry out a desired
task while minimizing a cost function. The dynamic equation of
the robot excluding frictional forces is as follows:

TR − JTRFint = MR(q)q̈+ CR(q, q̇)q̇ = ŴR(q, q̇, q̈) (1)

where TR is the vector of robot motor torques, and JR is the robot
geometric Jacobian. Fint is the robot to human interaction force
in the global coordinates, and it is equal to the measured force
by the force sensor (i.e., Fint = Fext). MR is the robot inertia
(mass) matrix, and CR is the robot Coriolis-centrifugal matrix.
The state-space representation for the robot dynamics can be
expressed as:

ẋq =





q̇1
q̇2

M−1
R (u− ŴR(q, q̇, 0))



 = F(xq, u), (2)

where:

u = TR − JTRFext , (3)

and

xq =
{
q

q̇

}
=





q1
q2
q̇1
q̇2




. (4)

The objective is to develop a real-time controller that optimizes
impedance gains at different configurations. Since the state-
space representation (2) is nonlinear, application of nonlinear
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FIGURE 1 | Human-robot rehabilitation system. (A) Experimental setup (an informed and written consent was obtained from the depicted individual for the publication

of their identifiable image). (B) MapleSimTMmodel (circled numbers show the corresponding muscle number).

optimal control approaches will be limited by the computation
time. On the other hand, if (2) was linear, a linear optimal
controller (such as LQR or H-infinity) could solve this problem
in real-time. Since the robot performs preplanned point to point
reaching tasks in the horizontal plane (Lu et al., 2011), we can
perform Jacobian linearization on the robot dynamics along the
preplanned rehabilitation trajectory to apply a systematic linear
control technique, which can allow for real-time control. In
recent robotic rehabilitation simulation studies (Ge et al., 2014;
Modares et al., 2016), LQR was used to implement optimal
impedance control. Hence, we also use an LQR approach to solve
the optimal impedance control problem. The LTV state-space
equation of the robot’s error dynamics will be:

ẋqd − ẋq =
∂F

∂xq

⌋

xq=xqd ,u=ud

(
xqd − xq

)
+

∂F

∂u

⌋

xq=xqd ,u=ud

(ud − u)

= ˙̃xq = �q̃xq +�qũ, (5)

where subscript d indicates the desired value of a variable, and
accent ∼ denotes the error of the desired variable with respect
to its actual value. � and � are the state and input matrices,
respectively. The desired control input is defined by the following
equation:

ud = ŴR(qd, q̇d, q̈d). (6)

At each operational point, which is defined every 1000/ν ms
of the rehabilitation trajectory, the model is linearized and the
interaction force is applied to the robot. ν is the sampling-time
frequency which is measured in Hz. It is worth noting that, if
very few operational points are defined, the systemmay be biased
into optimizing for static situations. At each operational point,
the controllability (C) and observability (O) matrices are defined
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as:

C =
[
�q �q�q �

2
q�q �

3
q�q

]
4×8

, O =




�

�q

�2
q

�3
q




16×4

, (7)

where � is an identity matrix.
At each operational point, there is an LTV impedance model

which is relating the end-effector operational space error (̃ρ6) to
interaction force error:

− F̃6
ext = Mimp

˜̈ρ6 + Bimp
˜̇ρ6 + Kimpρ̃

6 , (8)

here, it is assumed that the desired interaction force is equal
to zero, that is F̃6

ext = −F6
ext . ρ̃ is the end-effector position

error in the Cartesian coordinates, and subscript imp stands for
the impedance model. M, B, and K are mass, damping, and
stiffness coefficients (impedance gains), respectively. These gains
are time-dependent. These gains are time-dependent. Superscript
6 denotes that the corresponding vector is defined in the
end-effector’s n-t coordinates (i.e., the operational space; see
Figure 1B). If R6 is the rotation matrix transforming the n-t
coordinates to the Cartesian coordinates, ρ̃6 can be obtained
from the following equations:





ρ̃6 = RT
6 ρ̃,

R6 =
[
cos(θ6) − sin(θ6)
sin(θ6) cos(θ6)

]
,

(9)

where θ6 is defined in Figure 1B.
The LTV state-space Equation (5) is in terms of errors, so we

can use the infinite time3 LQR to optimally control the robot
along the desired trajectory. For the LQR approach, the quadratic
cost function is:

Jq =
1

2

∫ ∞

0

(
x̃Tq�q̃xq + ũT�qũ

)
dt. (10)

The above cost function is for minimizing the joint space error
together with the consumed energy. An impedance control
approach controls the robot performance in the operational space
as in (8) (Siciliano et al., 2009; Hogan, 2017). Thus, for an optimal
impedance control it will be desired to minimize the operational
space error together with the operationally applied force (effort)
error while satisfying (8). In other words, the following cost
function is more appropriate than (10):

J6 =
1

2

∫ ∞

0

(
x̃T6�6 x̃6 + �̃T6�6�̃6

)
dt, (11)

where �̃6 is the operational space transformation of the applied
force error in the Cartesian space (�̃):

{
� = J−T

R u = J−T
R TR − Fext ,

�̃ ≅ J−T
Rd

ũ.
(12)

3This research is focused on “Errand Completion Tasks” as opposed to “Time

Management Tasks” (Sohlberg and Mateer, 2001), i.e., we assume that the timing

in performing the rehabilitation task is not critical.

To solve the LQR problemwith the updated cost function in (11),
we use the mapping from the operational space into the joint
space and then solve the LQR problem with the ordinary cost
function in (10).

2.2.1. Mapping the Operational Into Joint Space
We define the joint, Cartesian and operational state errors as
follows:

x̃q =
{
qd − q

q̇d − q̇

}
=

{
q̃
˜̇q

}
, (13)

x̃ρ =
{

ρd − ρ

ρ̇d − ρ̇

}
=

{
ρ̃
˜̇ρ

}
, (14)

x̃6 =
{

ρ6
d
− ρ6

ρ̇
6
d − ρ̇

6

}
=

{
ρ̃6

˜̇ρ6

}
. (15)

Based on the inverse kinematics of the robot, the geometric
Jacobian definition (Siciliano et al., 2009) and first-order Taylor
series expansion, the relation between the Cartesian and joint
space errors can be defined as:

{
ρ̃ ≅ JRdq̃,
˜̇ρ ≅ J̇Rdq̃+ JRd˜̇q,

(16)

Thus, the operational state error in terms of the joint state error
can be defined by the following equation:

x̃ρ ≅

[
JRd 0

J̇Rd JRd

]
x̃q. (17)

Consider Figure 1B, the operational coordinate (6:n-t) is the
rotated and translated Cartesian coordinate (G:ZX) by angle θ6

and desired position vector ρd, respectively; thus, the relation
between the operational and Cartesian space errors can be
defined as:

{
ρ̃ = R6 ρ̃6 ,

˙̃ρ = Ṙ6 ρ̃6 + R6
˜̇ρ6

.
(18)

By defining ̟6 as the skew symmetric matrix of the angular
velocity (θ̇6), the operational state error can be defined in terms
of the Cartesian state error as:

x̃ρ =
[

R6 0

̟6R6 R6

]
x̃6 . (19)

Finally, the operational and joint state errors can be related as:

x̃6 ≅

[
R6 0

̟6R6 R6

]−1 [
JRd 0

J̇Rd JRd

]
x̃q =

[
J6
Rd

0

J̇6
Rd

J6
Rd

]
x̃q = T6

q x̃q.

(20)
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2.2.2. Building Updated LQR Matrices
We define �6 and �6 in the operational space cost function
(11) as positive definite diagonal matrices. Using the mapping
Equation (20) we can correlate the first terms of the two quadratic
cost functions (10,11); thus, �q can be defined as:

�q =
(
T6

q

)T
�6T

6
q . (21)

Note that �q is positive definite, since �6 is positive definite.
Since:

�̃6 = R6�̃, (22)

considering (12) we can also rearrange the energy term in the
joint space cost function (10) as:

ũT�qũ =
(
JTRd�̃

)T
�q

(
JTRd�̃

)
=

(
JTRdR6�̃6

)T
�q

(
JTRdR6�̃6

)

= �̃T6RT
6JRd�qJ

T
RdR6�̃6 > 0. (23)

Now since�6 is positive definite, if:

�q =
(
RT

6JRd

)−1
�6

(
JTRdR6

)−1
=

(
J6Rd

)−1
�6

(
J6Rd

)−T
. (24)

�q is also positive definite unless the robot is at a singularity
point. Based on (24), minimizing the energy term in the joint
space cost function (10) will indirectly minimize the energy term
in the operational space cost function (11).

2.2.3. Optimal Impedance Control
With the updated LQR matrices, the optimal impedance
controller scheme takes the structure shown in Figure 2. Using
(3), the driving torque will be:

TR = u+ JTRFext , (25)

where the control input u is defined such that it should optimally
control the error dynamics (by −ũ) while applying the nominal

control input (
◦
u). Thus, it will have the following form:





u
1= ◦
u− ũ,

◦
u = ud − JT

Rd
Fext ,

ũ = −�̃xq.
(26)

Note that the nominal control input is equal to the desired system
dynamics (desired control input) minus the torque caused by
the interaction force at any desired location. This subtraction
(ud − JT

Rd
Fext) at a zero tracking error will lead to a zero desired

interaction force in (8). Finally, the Equations (25), (26) are used
to satisfy the impedance model (8) (as shown in Appendix A), in
order to overcome the robot dynamics and interaction force.

3. CONTROLLER ASSESSMENT

Here, the simulation procedure for controller tuning, assessment
and comparison is presented. Then, the experimental procedure
for validation of the simulation results is discussed. Finally,
assessment criteria for controller evaluation are provided.

3.1. Simulations
In robotic rehabilitation, it is usually desired to follow a
predefined path. During a path-following task, at least three
therapy cases can occur (Ding et al., 2007; Amirabdollahian,
2011):

1. Passive case: the patient cannot accomplish the task, so the
robot actively manipulates the patient’s hand.

2. Active-assisted case: the patient is unable to finish the task
independently in a specified time interval. Thus, the robot
assists the patient as needed.

3. Active-constrained case: the patient can accomplish the task
independently even faster than the predefined time interval.
Hence, the robot tries to resist against patient’s rapid
movements.

Here, to evaluate the performance of the controller during
a rehabilitation procedure, four modes of movement are
considered: impaired, healthy, delayed and time-advanced hand

FIGURE 2 | Optimal impedance controller scheme. ρd and qd are the desired positions in the operational and joint spaces, respectively. x̃q is the state error vector in

the joint space, ũ is the optimal control input for the error dynamics, and ů is the nominal control input (desired torque minus the torque caused by the interaction

force). �q, �q, and �q and �q are the time-varying state, input, and LQR gain matrices, respectively.
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movement along the specified path. Each of these modes will lead
to one of the above therapy cases.

In the impaired hand movement mode, the upper extremity
of the patient is totally dysfunctional (zero muscle activation),
so the passive case will occur. In the healthy mode, the patient
has normal timing and coordination, so one of the active cases
can happen depending on the healthy subject performance. The
delayed hand movement mode is used to model a stroke patient
who needs assistance during therapy, and it leads to the active-
assisted case. The time-advanced mode models a patient with
rapid hand movements; thus, the active-constrained case will be
enabled. The performance of the proposed controller (OIC) is
compared to the SOIC (Siciliano et al., 2009; Hogan, 2017) (see
Appendix C), which is also designed for the robot to perform in
four modes of the movement.

For LQR weights, matrix �6 is defined to have less position
error along the normal to the path, and matrix �6 is considered
to have less force error along the path (see Appendix B for
choosing LQR weights). To run simulations, we should consider
a trajectory for manipulation. Based on Ghannadi et al. (2014b)
the trajectory is approximated by a smooth curvilinear path with
a large radius of curvature (Figure 1B). Then, a cubic spline
interpolation approach is used to generate the path with a bell-
shaped tangential speed profile andminimum jerk (see Figure 3).

Generated MapleSimTMmodels are exported as optimized
MATLAB R© S-functions into the Simulink/MATLAB R©

environment. Sampling-time frequency of the simulations

is set to ν = 1000 Hz, and a fixed-step Euler solver is selected to
solve the ordinary differential equations.

3.2. Experiments
To evaluate the performance of the controllers during a
rehabilitation procedure, a healthy male subject performed four
modes of movement similar to the simulations (see Figure 1A).
To this end, the following protocols are considered:

• Impaired-hand movement mode: the subject is asked to relax
his/her upper extremity muscles and avoid any contractions as
much as possible.

• Healthy hand movement mode: the subject should do his/her
best in following the desired trajectory.

• Delayed hand movement mode: the subject is asked to follow
a path that is delayed compared to the desired trajectory.

• Time-advanced hand movement mode: the subject should
follow a path for which the desired trajectory is the delayed
form.

In the last three protocols, the point on the curvilinear path
at each simulation time step is defined by a small circular
region. The subject should try to keep the end-effector position
inside that region while tracing the curvilinear path. In other
words, the small circular regions define the accuracy required for
tracing the curvilinear path. To reduce the effect of random/noisy
movements, each mode for each controller was performed in 10

FIGURE 3 | Desired position and speed for point-to-point reaching movement.
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trials. Tests of the two controllers were alternated randomly to
reduce the effect of learning.

In our controller design, the optimality criterion is to
minimize the tracking and applied force errors in the operational
space. As discussed in the Introduction, the CNS optimally
controls a human’s environmental interaction. Hence, in a
rehabilitation task, aligned with the CNS decision making
process, the subject tries to minimize the interaction force and
tracking error as much as possible. For the active-assisted (or
active-constrained) therapy case, if the amount of assisting (or
resisting) force can be increased with minimal change in the
position tracking error induced by the subject’s latency (or rapid
movement), at first, the subject will decrease (or increase) muscle
activations. However, later in the next stages of the therapy,
unimproved tracking accuracy with higher interaction force will
entice the subject to reduce the tracking error in order to decrease
the applied interaction force, and this is done by increasing (or
decreasing) muscle activations. In other words, in active-assisted
therapy, an impaired subject may feel more assistive force if
they are not able to minimize the tracking error. The increase
in assistive (or resistive) force is regulated by the impedance
model. In contrast to SOIC, this amount is achieved optimally
in OIC based on the robot’s configuration. That is why, later in
the section 4, the optimal increase in interaction force in OIC is
more significant than in SOIC.

The optimal increase in interaction force in OIC is in
contrast to a conventional proportional-integral-derivative (PID)
controller, which tries to minimize the tracking error while
increasing the interaction force. With the PID controller, the
subject will not have any motivation to minimize the tracking
error, since the robot has already reduced it. Furthermore, if
the subject suffers from stiff joints or muscle fatigue, the PID
controller will increase his muscle activities, since he will resist
against the robot movement and this may lead to injuries.
It is worth noting that, in OIC, if the assistive (or resistive)
force increases more than a certain amount so-called optimal
interaction force, which is regulated by controller gains (similar
to the PID controller), the tracking error will decrease and the
subject will try to provide resisting force by increasing muscle
activities.

Robot motors are rated at 115 mN-m of continuous torque.
The continuous force at the hand (or end-effector) is limited
to 13 N per plane of motion. Driven joint angles are measured
by two optical encoders (with 4,000 count/revolution, which
results in a sensitivity of 0.8 mm/count in detecting changes in
the Cartesian space) connected to the motors. The disc and the
belt mechanism increase the output torque by a ratio of 307/16.
The robot end-effector has a 6-axis force-torque (FT) sensor,
which measures the human-robot interaction forces and torques
in body frame. The FT sensor has been calibrated to tolerate
maximum 250 N on the horizontal plane and 1000 N normal to
the plane. Sensor resolution is 1/24 N in the horizontal plane and
1/48 N normal to the plane.

The robot has frictional joints with stiffness and the
manipulator moves on a frictional surface. These frictions are
modeled using three continuous velocity-based frictional models
(Brown and McPhee, 2016). Hence, robot dynamic Equation

(1) is updated (refer to Ghannadi et al., 2017b for the detailed
dynamic parameter identification of the robot):

TR−JTRFint = MR(q)q̈+CR(q, q̇)q̇+KR(q−q0)+fT+JTR fF = ŴR(q,q̇, q̈),

(27)
where fF is the friction force under the end-effector in the global
coordinates, fT is the friction torque vector at the joints, and KR

is a 2× 2 symmetric joint stiffness matrix.
The robot’s computer software interface includes

Simulink/MATLABr which uses Quanser’s real-time control
software driver (QUARC). To control the robot, the driver
software uses Quanser’s data acquisition (DAQ) card (Q8).
The driver and application software communicate through
TCP/IP and shared memory protocol. To read the FT sensor
data, a National Instruments DAQ card (PCI-6229) is used.
This card is compatible and operable by the QUARC software.
Sampling-time frequency of the experiments is set to ν = 500Hz,
and a fixed-step Euler solver is selected to solve the ordinary
differential equations.

3.3. Assessment Criteria
Muscle activities during reaching tasks in upper extremity
rehabilitation have been used as a measure for performance
evaluation (Wagner et al., 2007). As discussed, if the assistive
(or resistive) force is greater than a threshold (i.e., optimal
interaction force) then the subject will try to provide resisting
force by increasing muscle activities, which may cause injuries.
Maintaining this increase in the assistive (or resistive) force less
than the threshold will decrease (or increase) muscle forces (i.e.,
activations); this is in good correlation with the goals of robotic
rehabilitation therapy (Amirabdollahian, 2011). Therefore, to
capture the effect of increased assistance (or resistance) to
the subject, we assess the simulated performance of the OIC
and SOIC controllers using the activation results from the
musculoskeletal model interacting with the robot. Furthermore,
the dynamic response of the system is used to evaluate the
controllers in terms of the amount of interaction force and
tracking error.

4. RESULTS AND DISCUSSIONS

4.1. Muscular Activities
Since muscle activities less than 0.003 are mostly caused by
suboptimal results and round-off calculation errors, muscles with
activations less than this amount are not reported. Instead, active
muscles with activations more than 0.003 are studied. These
muscles are: Muscle 1, mono-articular shoulder flexor; Muscle 4,
mono-articular shoulder extensor; and Muscle 5, bi-articular
shoulder-elbow flexor.

As shown in Figure 4, for the delayed hand movement in
both controllers, the robot assistance has decreased the amount
of muscle activation compared to the other modes, for most
of the path. In the delayed hand movement mode, when the
robot detects a subject’s latency, it increases the assistive force
compared to the healthy hand movement. This increase in
assistive force decreases the subject’s muscular activities. Despite
the increase in assistive force, the tracking accuracy has not
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FIGURE 4 | Activations of the active muscles in three modes of simulation while controlling the robot (A) OIC, and (B) SOIC. Note that in the impaired mode, muscle

activations are zero.

improved. Thus, compared to the healthy subject, the subject
with lower muscular activities will feel higher interaction force
but unimproved tracking accuracy.

For the time-advanced mode in both robot controllers, the
amount of maximum muscle activations is higher than the
other modes. Similar to the delayed hand movement, despite the
increase in resistive force, the tracking accuracy has not changed
significantly. Therefore, compared to the healthy subject, the
subject with higher muscular activities will feel more interaction
force but with unimproved tracking accuracy. In the healthy hand
movement mode, both controllers result in the same amount of
activation.

Simulation results for both the delayed and time-advanced
hand movements (in OIC and SOIC) indicate that active-
assisted and active-constrained therapies have been invoked,
respectively. In the active-assisted case, muscular activities of the
subject are too low for the task to be finished independently;
hence, the robot assists him. In the active-constrained case, the
robot resists the subject with high muscular activities. From
the delayed hand movement results (weak tracking performance
with high interaction force), we can speculate that the subject
will try to improve the tracking accuracy in the next stages of
therapy by applying more muscle force, thereby decreasing the
interaction force. Similarly, in the next stages of the therapy

with time-advanced hand movement (more resisting force with
increased muscular activities), the subject may try to reduce
the tracking error and resisting force by decreasing muscular
activities. In other words, continuing the robot therapy will
achieve levels of muscle activation close to those for a healthy
subject.

Although, both controllers are successful in implementing
active-assisted and active-constrained therapies, in the delayed
hand movement mode, the decrease in muscle activation for
the OIC is more than the SOIC (see the root mean square
(RMS) values for the delayed mode in Figure 5). Thus, in OIC,
if the delayed hand movement subject wants to improve tracking
accuracy and decrease the assistive force, he can have a wider
range of muscle activations compared to SOIC. With a higher
assistive force compared to the SOIC, and a wider range for the
muscle activation changes, the OIC can be used for a wider range
of applications and patients in active-assisted therapy. In other
words, the OIC is more effective in active-assisted therapy.

4.2. Dynamic Response
Normalized interaction forces and position errors in the
operational space are compared for four modes (see Figures 6, 7
for simulation and experimental results). Interaction force
results are normalized to the maximum applied force in the
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FIGURE 5 | RMS of active muscle activations in three modes using OIC (solid fill) and SOIC (crosshatch fill). Circled numbers are corresponding to the active muscle

numbers.

FIGURE 6 | Operational space normalized interaction force and position error in four modes of simulations while controlling the robot with (A) OIC, (B) SOIC.

Subscripts ‖ and ⊥ indicate the tangent and normal directions, respectively.

horizontal plane to show similar trends to the approximate
and highly idealized simulation model. Both in experiments
and simulations, tangential interaction force plots show that the

amount of assistance (in the delayed condition) or resistance
(in the time-advanced condition) for the OIC is slightly more
than the SOIC. Both in simulations and experiments, normal
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FIGURE 7 | Operational space normalized interaction force and position error in four modes of experiments while controlling the robot with (A) OIC, (B) SOIC. The

shaded area denotes twice the standard deviation at each instance of experiment.

interaction force amount in the impaired hand movement mode
for the OIC is not more than the SOIC, while for the other modes,
the OIC results in higher values than the SOIC. This is because
the position error in the normal direction is reduced by the
OIC. However, the normal position error for the impaired hand
movement mode in the SOIC is significantly more than the OIC.
This shows that the optimal performance of the SOIC, especially
in experiments, has failed to deal with impaired patients. The
tangential position error is similar for both controllers.

In simulations with the SOIC (Figure 6), after 3 s of the
simulation, normal position error for the time-advanced hand
movement is strictly increasing, and this will result in instability
issues. However, this does not happen in experiments, since robot
instability limited the selection of higher gains for the SOIC.
Thus, in experiments, the robot in the SOIC is set to be more
compliant. In simulations for the SOIC, between the position
error and the interaction force, there is a linear relationship which
is due to the linear time invariant (LTI) impedance model of the
controller. However, for the OIC this relationship is nonlinear,

and this is because of the LTV impedancemodel of the controller.
One cannot see this nonlinear relationship because the robot’s
frictional forces have changed the system behavior and made it
linear.

Regarding the controller structure, for the OIC, the state-
space model is controllable and observable because at each
operational point (and any intermittent interval), C and O are
rank 4; furthermore, the dominant pole position of the LQR
controller (which is the closest eigenvalue of

[
�q −�q�

]
to

the imaginary axis) at each operational point has a negative real
value, which makes the system critically damped. On the other
hand, the optimum values of SOIC are such as to result in an
under-damped system with a damping ratio of

√
2/2.

5. CONCLUSION

In this study, we designed and verified a modified LQR controller
(i.e., OIC) for optimal impedance control, which indirectly
considers the operational space and interaction forces. This
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modified LQR controller was compared to the SOIC (which is
based on the feedback linearization approach). Despite some
similarities to the SOIC, the OIC has proven to be more efficient
in passive, active-assisted, active-constrained therapy since it
updates the impedance gains optimally during a reaching task
(at different robot configurations). Physiologically, this efficient
behavior causes less muscle activations in active-assisted therapy.
Dynamically, the controller ismore robust to disturbances caused
by unknown dynamics, and the tracking error and interaction
force are in a safer region.

Since the QUARC software does not support online LQR gain
adjustments using an LQR s-function during experiments, an
offline gain selection is done based on the desired configuration
of the robot. In online gain selection, the gains are updated
based on the current configuration of the robot. Hence, in offline
gain selection, the implemented controller can be classified
as an optimal passive trajectory tracking controller. In recent
experiments, we managed to perform online gain adjustment
with MATLAB’s built-in LQR controller, but the results were
similar to the offline gain selection results presented in this
paper. In the offline gain selection experiments, we generated
different modes similar to the simulations. In other words, we
maintained the current configuration of the robot close to the
desired configuration. That is why, similar results from the
offline and online gain selection experiments are obtained. The
controller’s computational cost is the same as that of the SOIC,
even if the LQR gains are adjusted online. In OIC, therapists will
be able to modify the controller with a single parameter c in (36),
which represents the effort/state balance weight; the inclusion of
a single calibration parameter contributes to the superiority of the
OIC over SOIC.

Here, an integrated human-robot dynamic system is used to
fine-tune the controller gains. This method is advantageous for
efficient tuning of the robot controllers in experiments. A good
qualitative agreement between experiments and simulations
verifies the effectiveness of this method.

Our proposed controller and tuning method can be
used in any rehabilitation manipulandum system. Possible
improvements for this method are as follows. First, for a
linear robot model, the OIC assumes an apparent mass for
the robot equal to its mass matrix, while the SOIC permits

offline changes to the robot’s apparent mass. For considering
the patient interaction dynamics, the robot’s apparent mass
should vary online as a function of the input frequencies of the
system. However, neither the OIC nor SOIC offer such updates.
Moreover, in regards to experiments, the unknown dynamics
of the robot presents a challenging issue, independent of the
controller. As a part of our future work, we will present a method
to implement an OIC on the robot which also allows for online
changes to the robot’s apparent mass. Second, in the impedance
model (8), the desired interaction force is assumed to be zero,
while for implementing any high-level controller that deals
with variable admittance environments (different patients or the
same patients at different stages of their therapy) this desired
interaction force should be updated by an outer-loop control law.
In our future work, we will also develop the outer-loop controller
to enhance the proposed OIC.

ETHICS STATEMENT

This study was carried out on a single subject in accordance with
the recommendations of the Tri-Hospital Research Ethics Board
(THREB) and the University of Waterloo Office of Research
Ethics (ORE) with written informed consent from the subject.
The subject gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
Tri-Hospital Research Ethics Board (THREB) and the University
of Waterloo Ethics Board.

AUTHOR CONTRIBUTIONS

BG development of the proposed method. RS technical help
for conducting experimental trials. JM supervisor of the
project.

ACKNOWLEDGMENTS

This work was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Canada Research
Chairs (CRC) program. The authors wish to thank Quanser
Consulting Inc. for providing the upper extremity rehabilitation
robot, and TRI for collaborating.

REFERENCES

Amirabdollahian, F. (2011). “Rehabilitation robots,” in New Frontiers in Human-

Robot Interaction, Vol. 2 of Advances in Interaction Studies, eds K. Dautenhahn

and J. Saunders (Amsterdam: John Benjamins Publishing Company),

305–326.

Brewer, B. R., McDowell, S. K., and Worthen-Chaudhari, L. C. (2007).

Poststroke upper extremity rehabilitation: a review of robotic systems

and clinical results. Topics Stroke Rehabilit. 14, 22–44. doi: 10.1310/tsr

1406-22

Brown, P., and McPhee, J. (2016). A continuous velocity-based friction model

for dynamics and control with physically meaningful parameters. J. Computat.

Nonlinear Dyn. 11:054502. doi: 10.1115/1.4033658

Corra, L., Oboe, R., and Shimono, T. (2017). “Adaptive optimal control for

rehabilitation systems,” in IECON 2017 - 43rd Annual Conference of the IEEE

Industrial Electronics Society (Beijing: IEEE), 5197–5202.

Ding, D., Simpson, R., Matuoka, Y., and LoPresti, E. (2007). “Rehabilitation

robotics,” in An Introduction to Rehabilitation Engineering, eds R. A. Cooper,

H. Ohnabe, and D. A. Hobson (Taylor & Francis), 211–238. Available online at:

https://www.crcpress.com/An-Introduction-to-Rehabilitation-Engineering/

Cooper-Ohnabe-Hobson/p/book/9780849372223

Ding, M., Hirasawa, K., Kurita, Y., Takemura, H., Takamatsu, J., Mizoguchi, H.,

et al. (2010). “Pinpointed muscle force control in consideration of human

motion and external force” in 2010 IEEE International Conference on Robotics

and Biomimetics (ROBIO) (Tianjin: IEEE), 739–744.

Dos Santos, W. M., and Siqueira, A. A. (2016). “Optimal impedance control

for robot-Aided rehabilitation of walking based on estimation of patient

behavior,” in Proceedings of 2016 6th IEEE International Conference on

Biomedical Robotics and Biomechatronics (BioRob) (Singapore: IEEE), 1023–

1028. doi: 10.1109/BIOROB.2016.7523765

Emken, J., Bobrow, J., and Reinkensmeyer, D. (2005). “Robotic movement training

as an optimization problem: designing a controller that assists only as needed,”

Frontiers in Robotics and AI | www.frontiersin.org 13 November 2018 | Volume 5 | Article 124

https://doi.org/10.1310/tsr1406-22
https://doi.org/10.1115/1.4033658
https://www.crcpress.com/An-Introduction-to-Rehabilitation-Engineering/Cooper-Ohnabe-Hobson/p/book/9780849372223
https://www.crcpress.com/An-Introduction-to-Rehabilitation-Engineering/Cooper-Ohnabe-Hobson/p/book/9780849372223
https://doi.org/10.1109/BIOROB.2016.7523765
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ghannadi et al. Configuration-Dependent Optimal Impedance Control of a Manipulandum

in 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005

(Chicago, IL: IEEE), 307–312.

Erol, D., and Sarkar, N. (2007). Design and implementation of an assistive

controller for rehabilitation robotic systems. Int. J. Adv. Robot. Syst. 4, 271–278.

doi: 10.5772/5688

Flash, T., and Hogan, N. (1985). The coordination of arm movements: An

experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703.

doi: 10.1523/JNEUROSCI.05-07-01688.1985

Franklin, D. W., Burdet, E., Tee, K. P., Osu, R., Chew, C. -M., Milner,

T. E., et al. (2008). CNS learns stable, accurate, and efficient

movements using a simple algorithm. J. Neurosci. 28, 11165–11173.

doi: 10.1523/JNEUROSCI.3099-08.2008

Ge, S. S., Li, Y., and Wang, C. (2014). Impedance adaptation for

optimal robot-environment interaction. Int. J. Control 87, 249–263.

doi: 10.1080/00207179.2013.827799

Ghannadi, B., and McPhee, J. (2015). “Optimal impedance control of an upper

limb stroke rehabilitation robot,” in ASME 2015 Dynamic Systems and Control

Conference (Columbus, OH: ASME).

Ghannadi, B., Mehrabi, N., and McPhee, J. (2014a). “Hybrid force-impedance

control of an upper-limb stroke rehabilitation robot interacting with a

musculoskeletal arm model,” in Proceedings of the 7th World Congress of

Biomechanics (Boston, MA) .

Ghannadi, B., Mehrabi, N., and McPhee, J. (2014b). “Use of a musculoskeletal

arm model in design and validation of a controller for an upper-limb stroke

rehabilitation robot,” in Proceedings of the 10th Conference of the International

Shoulder Group (Waterloo, ON), 21–22.

Ghannadi, B., Mehrabi, N., Sharif Razavian, R., Razavian, R. S., and McPhee,

J. (2017a). “Nonlinear model predictive control of an upper extremity

rehabilitation robot using a two-dimensional human-robot interaction model,”

in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(Vancouver, BC: IEEE), 502–507.

Ghannadi, B., Sharif Razavian, R., Ezati, M., and McPhee, J. (2017b). Dynamic

parameter identification of an upper extremity rehabilitation robot with friction

using direct collocation method. IEEE/ASME Trans. Mechatron. .

Glover, K., and Packard, A. (2017). Some numerical considerations in H-infinity

control. Syst. Control Lett. 101, 15–20. doi: 10.1016/j.sysconle.2016.03.009

Hebert, D., Lindsay, M. P., McIntyre, A., Kirton, A., Rumney, P. G., Bagg,

S., et al. (2016). Canadian stroke best practice recommendations: stroke

rehabilitation practice guidelines update 2015. Int. J. Stroke 11, 459–484.

doi: 10.1177/1747493016643553

Hogan, N. (1985). Impedance control: an approach to manipulation: part I -

Theory. J. Dyn. Syst. Meas. Control 107:1. doi: 10.1115/1.3140702

Hogan, N. (2017). “Physical interaction via dynamic primitives,” in Geometric and

Numerical Foundations of Movements, J. -P. Laumond, N. Mansard, and J. -B.

Lasserre (Cham: Springer), 269–299.

Hunt, K., Munih, M., and Donaldson, N. D. N. (1999). Application of optimal

control theory in rehabilitation engineering. IFAC Proc. Vol. 32, 1407–1409.

Huq, R., Lu, E., Wang, R., and Mihailidis, A. (2012). “Development of a portable

robot and graphical user interface for haptic rehabilitation exercise,” in 2012

4th IEEE RAS & EMBS International Conference on Biomedical Robotics and

Biomechatronics (BioRob) (Rome: IEEE), 1451–1457.

Hussain, S., Xie, S. Q., and Jamwal, P. K. (2013). Adaptive impedance control of

a robotic orthosis for gait rehabilitation. IEEE Trans. Cybern. 43, 1025–1034.

doi: 10.1109/TSMCB.2012.2222374

Ibarra, J. C. P., dos Santos, W. M., Krebs, H. I., and Siqueira, A. A. G.

(2014). “Adaptive impedance control for robot-aided rehabilitation of ankle

movements,” in 5th IEEE RAS/EMBS International Conference on Biomedical

Robotics and Biomechatronics (São Paulo: IEEE), 664–669.

Ibarra, J. C. P., Siqueira, A. A. G., and Krebs, H. I. (2015). “Assist-as-

needed ankle rehabilitation based on adaptive impedance control,” in 2015

IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE),

723–728.

Jarrassé, N., Charalambous, T., and Burdet, E. (2012). A framework to describe,

analyze and generate interactive motor behaviors. PLoS ONE 7:e49945.

doi: 10.1371/journal.pone.0049945

Jutinico, A. L., Jaimes, J. C., Escalante, F. M., Perez-Ibarra, J. C., Terra, M. H., and

Siqueira, A. A. G. (2017). Impedance control for robotic rehabilitation: a robust

Markovian approach. Front. Neurorobot. 11:43. doi: 10.3389/fnbot.2017.00043

Kim, W., Lee, D., Yun, D., Ji, Y., Kang, M., Han, J., et al. (2015).

“Neurorehabilitation robot system for neurological patients using H-infinity

impedance controller,” in IEEE International Conference on Rehabilitation

Robotics (ICORR) (Singapore: IEEE), 876–881.

Kowalczewski, J., and Prochazka, A. (2011). Technology improves

upper extremity rehabilitation. Progr. Brain Res. 192, 147–159.

doi: 10.1016/B978-0-444-53355-5.00010-5

Krueger, H., Lindsay, P., Cote, R., Kapral, M. K., Kaczorowski, J., and Hill, M. D.

(2012). Cost avoidance associated with optimal stroke care in canada. Stroke 43,

2198–2206. doi: 10.1161/STROKEAHA.111.646091

Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg,

G. F., Federman, D. G., et al. (2010). Robot-assisted therapy for long-

term upper-limb impairment after stroke. N. Engl. J. Med. 362, 1772–1783.

doi: 10.1056/NEJMoa0911341

Lu, E. C., Wang, R., Huq, R., Gardner, D., Karam, P., Zabjek, K., et al.

(2011). Development of a robotic device for upper limb stroke rehabilitation:

a user-centered design approach. Paladyn J. Behav. Robot. 2, 176–184.

doi: 10.2478/s13230-012-0009-0

Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., and Leonhardt, S.

(2014). A survey on robotic devices for upper limb rehabilitation. J. NeuroEng.

Rehabilit. 11:3. doi: 10.1186/1743-0003-11-3

Maldonado, B., Mendoza, M., Bonilla, I., and Reyna-Gutierrez, I. (2015).

“Stiffness-based tuning of an adaptive impedance controller for robot-assisted

rehabilitation of upper limbs,” in 2015 37th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE),

3578–3581.

Marchal-Crespo, L., and Reinkensmeyer, D. J. (2009). Review of control strategies

for robotic movement training after neurologic injury. J. NeuroEng. Rehabilit.

6:20. doi: 10.1186/1743-0003-6-20

Mazzoleni, S., Sale, P., Tiboni, M., Franceschini, M., Carrozza, M. C.,

and Posteraro, F. (2013). Upper limb robot-assisted therapy in chronic

and subacute stroke patients: a kinematic analysis. Am. J. Phys. Med.

Rehabilit. Assoc. Acad. Physiat. 92, e26–e37. doi: 10.1097/PHM.0b013e3182

a1e852

Modares, H., Ranatunga, I., Lewis, F. L., and Popa, D. O. (2016).

Optimized assistive human-robot interaction using reinforcement

learning. IEEE Trans. Cybern. 46, 655–667. doi: 10.1109/TCYB.2015.24

12554

Mombaur, K. (2016). “Optimal control for applications in medical and

rehabilitation technology: challenges and Solutions,” in Advances in

Mathematical Modeling, Optimization and Optimal Control, eds J. -B.

Hiriart-Urruty, A. Korytowski, H. Maurer, and M. Szymkat (Cham: Springer),

103–145.

Moughamir, S., Deneve, A., Zaytoon, J., and Afilal, L. (2005). “Hybrid

force/impedance control for the robotized rehabilitation of the upper limbs,”

in Proceedings of 16th IFACWorld Congress, ed P. Zítek (Prague), 2169–2169.

Perez-Ibarra, J. C., Alarcon, A. L. J., Jaimes, J. C., Ortega, F. M. E., Terra, M. H., and

Siqueira, A. A. G. (2017). “Design and analysis of H-inifnity force control of a

series elastic actuator for impedance control of an ankle rehabilitation robotic

platform,” in 2017 American Control Conference (ACC) (IEEE), 2423–2428.

Proietti, T., Crocher, V., Roby-Brami, A., and Jarrasse, N. (2016). Upper-

limb robotic exoskeletons for neurorehabilitation: A review on control

strategies. IEEE Rev. Biomed. Eng. 9, 4–14. doi: 10.1109/RBME.2016.25

52201

Reinkensmeyer, D. J. (2009). “Robotic assistance for upper extremity training after

stroke,” in Studies in Health Technology and Informatics, Vol. 145, A. Gaggioli,

E. A. Keshner, and L. Patrice (Tamar), 25–39.

Richards, C. L., and Malouin, F. (2015). Stroke rehabilitation: clinical picture,

assessment, and therapeutic challenge. Progr. Brain Res. 218, 253–280.

doi: 10.1016/bs.pbr.2015.01.003

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2009). Robotics: Modelling,

Planning and Control. Advanced Textbooks in Control and Signal Processing.

London: Springer.

Sohlberg, M. M. and Mateer, C. A. (2001). Cognitive ehabilitation: An Integrative

Neuropsychological Approach. New York, NY: Guilford Press .

Taherifar, A., Vossoughi, G., and Selk Ghafari, A. (2017). Optimal target impedance

selection of the robot interacting with human. Adv. Robot. 31, 428–440.

doi: 10.1080/01691864.2016.1272491

Frontiers in Robotics and AI | www.frontiersin.org 14 November 2018 | Volume 5 | Article 124

https://doi.org/10.5772/5688
https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985
https://doi.org/10.1523/JNEUROSCI.3099-08.2008
https://doi.org/10.1080/00207179.2013.827799
https://doi.org/10.1016/j.sysconle.2016.03.009
https://doi.org/10.1177/1747493016643553
https://doi.org/10.1115/1.3140702
https://doi.org/10.1109/TSMCB.2012.2222374
https://doi.org/10.1371/journal.pone.0049945
https://doi.org/10.3389/fnbot.2017.00043
https://doi.org/10.1016/B978-0-444-53355-5.00010-5
https://doi.org/10.1161/STROKEAHA.111.646091
https://doi.org/10.1056/NEJMoa0911341
https://doi.org/10.2478/s13230-012-0009-0
https://doi.org/10.1186/1743-0003-11-3
https://doi.org/10.1186/1743-0003-6-20
https://doi.org/10.1097/PHM.0b013e3182a1e852
https://doi.org/10.1109/TCYB.2015.2412554
https://doi.org/10.1109/RBME.2016.2552201
https://doi.org/10.1016/bs.pbr.2015.01.003
https://doi.org/10.1080/01691864.2016.1272491
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ghannadi et al. Configuration-Dependent Optimal Impedance Control of a Manipulandum

Todorov, E., and Jordan, M. I. (2002). Optimal feedback control as a

theory of motor coordination. Nat. Neurosci. 5, 1226–1235. doi: 10.1038/

nn963

Wagner, J. M., Dromerick, A. W., Sahrmann, S. A., and Lang, C. E.

(2007). Upper extremity muscle activation during recovery of reaching in

subjects with post-stroke hemiparesis. Clin. Neurophysiol. 118, 164–176.

doi: 10.1016/j.clinph.2006.09.022

Wang, R., Zhang, J., and Qiu, Z. (2017). “Optimal impedance control for an elbow

rehabilitation robot,” in 2017 14th International Conference on Ubiquitous

Robots and Ambient Intelligence (URAI) (Jeju: IEEE), 388–392.

Wisneski, K. J., and Johnson, M. J. (2007). Quantifying kinematics of purposeful

movements to real, imagined, or absent functional objects: implications for

modelling trajectories for robot-assisted ADL tasks. J. NeuroEng. Rehabilit. 4:7.

doi: 10.1186/1743-0003-4-7

Yamashita, M. (2014). Robotic rehabilitation system for human upper limbs

using guide control and manipulability ellipsoid prediction. Proc. Technol. 15,

559–565. doi: 10.1016/j.protcy.2014.09.016
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APPENDIX A: SATISFYING THE
IMPEDANCE MODEL

By applying the control law (25) and (26) to the robot dynamics
(27) and substituting ud from (6), we get:

�̃xq + ŴR(qd, q̇d, q̈d)− JTRdFext = ŴR(q, q̇, q̈). (A1)

Using Taylor series expansion and (13), (A1) can be rearranged
as:

JTRdFext = �̃xq +MRd
˜̈q+

∂ŴR

∂q̇

⌋

q=qd ,q̇=q̇d

˜̇q+
∂ŴR

∂q

⌋

q=qd ,q̇=q̇d

q̃

= MRd

[
0 �

]˜̇xq +
[
�P �D

]
x̃q, (A2)

where:




� =
[
�1 �2

]
,

�P = ∂ŴR
∂q

⌋
q=qd ,q̇=q̇d

+�1,

�D = ∂ŴR
∂q̇

⌋
q=qd ,q̇=q̇d

+�2.

(A3)

The following equations can be derived from (20):

x̃q ≅

[
J6
Rd

0

J̇6
Rd

J6
Rd

]−1

x̃6 =
[ (

J6
Rd

)−1
0

−
(
J6
Rd

)−1
J̇6
Rd

(
J6
Rd

)−1 (
J6
Rd

)−1

]
x̃6 = T

q
6 x̃6 ,(A4)

˜̇xq ≅ Ṫ
q

6 x̃6 +T
q
6
˜̇x6 . (A5)

Thus, (A2) can be written as:

JTRdFext = MRd

[
0 �

]
T

q
6
˜̇x6

+MRd

[
0 �

]
Ṫ

q

6 x̃6 +
[
�P �D

]
T

q
6 x̃6 . (A6)

(A6) is corresponding to the LTV impedance model (8), if:





Mimp = (J6
Rd
)−TMRd(J

6
Rd
)−1,

Bimp = (J6
Rd
)−T�D(J

6
Rd
)−1 − 2MimpJ̇

6
Rd
(J6
Rd
)−1,

Kimp = (J6
Rd
)−T�P(J

6
Rd
)−1 −

(
MimpJ̈

6
Rd

+ BimpJ̇
6
Rd

)
(J6
Rd
)−1.

(A7)

APPENDIX B: CHOOSING LQR GAINS

Matrices �6 and�6 have diagonal weights:

{
�6 = Diag (Q61,Q62,Q63,Q64) ,

�6 = Diag (R61,R62) ,
(A8)

where these weights are chosen such that the cost function results
in the allowable error associated with the state or effort, in other
words:

{
Q6,i = y−2

tol,i
(i = 1..4),

R6,j = cF−2
tol,j

(j = 1..2),
(A9)

TABLE A1 | Experimental values of the OIC coefficients.

ytol1 ytol2 ytol3 ytol4 Ftol1 Ftol2 c

1
90 m 1

30 m 1 m/s 100
32 m/s 10 N 10

3 N 1

TABLE A2 | Experimental values of the SOIC coefficients.

Mimp1 Mimp2 ytol1 ytol2 Ftol1 Ftol2

2.2 kg 2.2 kg 1
90 m 1

30 m 10 N 10 N

in which ytol,k and Ftol,k are the allowable amount of the
kth element of the state (̃x6) and effort (�6) vector errors,
respectively. These weights should also be adjusted such that
the (A7) results in positive definite impedance gains. Coefficient
c > 0 will be controlled by the therapist to adjust the effort/state
balance. The coefficients of the experiments for the OIC are given
in Table 1.

APPENDIX C: STANDARD OPTIMAL
IMPEDANCE CONTROL

For the robot dynamics (27), using nonlinear feedback
linearization (inverse dynamics approach), we define the control
law as (Siciliano et al., 2009):

TR = JTRFext + ŴR(q, q̇,y), (A10)

where y is the outer loop control law and is defined such that
it changes manipulator behavior to a linear impedance under
interaction force error. In other words, it is desired to have
the linear impedance model in the operational space as in (8)
with time invariant coefficients. This impedance model can be
achieved if the outer loop control law is defined as:

y = J−1
R R6M

−1
imp

(
Mimp(ḃ− J̇6R q̇)+ Bimp

˜̇ρ6 + Kimpρ̃
6 + F̃6

ext

)
,

(A11)
where:





ḃ = RT
6 ρ̈d − ˙̟ 6 ρ̃6 + ̟6̟6 ρ̃6 + ̟6R

T
6(JRq̇− 2ρ̇d),

J̇6R = RT
6 J̇R − ̟6R

T
6JR,

Ṙ6 = ̟6R6 ,

̟6 =
[

0 −θ̇6

θ̇6 0

]
.

(A12)
For this controller, with a predefined diagonal mass coefficient
matrix, the standard optimum stiffness and damping are as
follows (Hogan, 2017):





Mimp = Diag
(
Mimp1,Mimp2

)
,

Bimp = Diag
(
Ftol1
ytol1

, Ftol2ytol2

)
,

Kimp = Diag
(√

2Ftol1Mimp1

ytol1
,
√

2Ftol2Mimp2

ytol2

)
.

(A13)

The coefficients of the experiments for the SOIC are given in
Table 2.
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