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Robots are becoming a popular means of rehabilitation since they can decrease

the laborious work of a therapist, and associated costs, and provide well-controlled

repeatable tasks. Many researchers have postulated that human motor control can be

mathematically represented using optimal control theories, whereby some cost function

is effectively maximized or minimized. However, such abilities are compromised in stroke

patients. In this study, to promote rehabilitation of the stroke patient, a rehabilitation robot

has been developed using optimal control theory. Despite numerous studies of control

strategies for rehabilitation, there is a limited number of rehabilitation robots using optimal

control theory. The main idea of this work is to show that impedance control gains cannot

be kept constant for optimal performance of the robot using a feedback linearization

approach. Hence, a general method for the real-time and optimal impedance control of

an end-effector-based rehabilitation robot is proposed. The controller is developed for

a 2 degree-of-freedom upper extremity stroke rehabilitation robot, and compared to a

feedback linearization approach that uses the standard optimal impedance derived from

covariance propagation equations. The newmethod will assign optimal impedance gains

at each configuration of the robot while performing a rehabilitation task. The proposed

controller is a linear quadratic regulator mapped from the operational space to the joint

space. Parameters of the two controllers have been tuned using a unified biomechatronic

model of the human and robot. The performances of the controllers were compared

while operating the robot under four conditions of human movements (impaired, healthy,

delayed, and time-advanced) along a reference trajectory, both in simulations and

experiments. Despite the idealized and approximate nature of the human-robot model,

the proposed controller worked well in experiments. Simulation and experimental results

with the two controllers showed that, compared to the standard optimal controller,

the rehabilitation system with the proposed optimal controller is assisting more in the

active-assist therapy while resisting in active-constrained case. Furthermore, in passive

therapy, the proposed optimal controller maintains the position error and interaction

forces in safer regions. This is the result of updating the impedance in the operational

space using a linear time-variant impedance model.

Keywords: optimal impedance control, linear quadratic regulator, operational space, rehabilitationmanipulandum,

human-robot interaction, stroke rehabilitation
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FIGURE 5 | RMS of active muscle activations in three modes using OIC (solid fill) and SOIC (crosshatch fill). Circled numbers are corresponding to the active muscle

numbers.

FIGURE 6 | Operational space normalized interaction force and position error in four modes of simulations while controlling the robot with (A) OIC, (B) SOIC.

Subscripts ‖ and ⊥ indicate the tangent and normal directions, respectively.

horizontal plane to show similar trends to the approximate
and highly idealized simulation model. Both in experiments
and simulations, tangential interaction force plots show that the

amount of assistance (in the delayed condition) or resistance
(in the time-advanced condition) for the OIC is slightly more
than the SOIC. Both in simulations and experiments, normal
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FIGURE 7 | Operational space normalized interaction force and position error in four modes of experiments while controlling the robot with (A) OIC, (B) SOIC. The

shaded area denotes twice the standard deviation at each instance of experiment.

interaction force amount in the impaired hand movement mode
for the OIC is not more than the SOIC, while for the other modes,
the OIC results in higher values than the SOIC. This is because
the position error in the normal direction is reduced by the
OIC. However, the normal position error for the impaired hand
movement mode in the SOIC is significantly more than the OIC.
This shows that the optimal performance of the SOIC, especially
in experiments, has failed to deal with impaired patients. The
tangential position error is similar for both controllers.

In simulations with the SOIC (Figure 6), after 3 s of the
simulation, normal position error for the time-advanced hand
movement is strictly increasing, and this will result in instability
issues. However, this does not happen in experiments, since robot
instability limited the selection of higher gains for the SOIC.
Thus, in experiments, the robot in the SOIC is set to be more
compliant. In simulations for the SOIC, between the position
error and the interaction force, there is a linear relationship which
is due to the linear time invariant (LTI) impedance model of the
controller. However, for the OIC this relationship is nonlinear,

and this is because of the LTV impedancemodel of the controller.
One cannot see this nonlinear relationship because the robot’s
frictional forces have changed the system behavior and made it
linear.

Regarding the controller structure, for the OIC, the state-
space model is controllable and observable because at each
operational point (and any intermittent interval), C and O are
rank 4; furthermore, the dominant pole position of the LQR
controller (which is the closest eigenvalue of

[
�q −�q�

]
to

the imaginary axis) at each operational point has a negative real
value, which makes the system critically damped. On the other
hand, the optimum values of SOIC are such as to result in an
under-damped system with a damping ratio of

√
2/2.

5. CONCLUSION

In this study, we designed and verified a modified LQR controller
(i.e., OIC) for optimal impedance control, which indirectly
considers the operational space and interaction forces. This

Frontiers in Robotics and AI | www.frontiersin.org 12 November 2018 | Volume 5 | Article 124

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ghannadi et al. Configuration-Dependent Optimal Impedance Control of a Manipulandum

modified LQR controller was compared to the SOIC (which is
based on the feedback linearization approach). Despite some
similarities to the SOIC, the OIC has proven to be more efficient
in passive, active-assisted, active-constrained therapy since it
updates the impedance gains optimally during a reaching task
(at different robot configurations). Physiologically, this efficient
behavior causes less muscle activations in active-assisted therapy.
Dynamically, the controller ismore robust to disturbances caused
by unknown dynamics, and the tracking error and interaction
force are in a safer region.

Since the QUARC software does not support online LQR gain
adjustments using an LQR s-function during experiments, an
offline gain selection is done based on the desired configuration
of the robot. In online gain selection, the gains are updated
based on the current configuration of the robot. Hence, in offline
gain selection, the implemented controller can be classified
as an optimal passive trajectory tracking controller. In recent
experiments, we managed to perform online gain adjustment
with MATLAB’s built-in LQR controller, but the results were
similar to the offline gain selection results presented in this
paper. In the offline gain selection experiments, we generated
different modes similar to the simulations. In other words, we
maintained the current configuration of the robot close to the
desired configuration. That is why, similar results from the
offline and online gain selection experiments are obtained. The
controller’s computational cost is the same as that of the SOIC,
even if the LQR gains are adjusted online. In OIC, therapists will
be able to modify the controller with a single parameter c in (36),
which represents the effort/state balance weight; the inclusion of
a single calibration parameter contributes to the superiority of the
OIC over SOIC.

Here, an integrated human-robot dynamic system is used to
fine-tune the controller gains. This method is advantageous for
efficient tuning of the robot controllers in experiments. A good
qualitative agreement between experiments and simulations
verifies the effectiveness of this method.

Our proposed controller and tuning method can be
used in any rehabilitation manipulandum system. Possible
improvements for this method are as follows. First, for a
linear robot model, the OIC assumes an apparent mass for
the robot equal to its mass matrix, while the SOIC permits

offline changes to the robot’s apparent mass. For considering
the patient interaction dynamics, the robot’s apparent mass
should vary online as a function of the input frequencies of the
system. However, neither the OIC nor SOIC offer such updates.
Moreover, in regards to experiments, the unknown dynamics
of the robot presents a challenging issue, independent of the
controller. As a part of our future work, we will present a method
to implement an OIC on the robot which also allows for online
changes to the robot’s apparent mass. Second, in the impedance
model (8), the desired interaction force is assumed to be zero,
while for implementing any high-level controller that deals
with variable admittance environments (different patients or the
same patients at different stages of their therapy) this desired
interaction force should be updated by an outer-loop control law.
In our future work, we will also develop the outer-loop controller
to enhance the proposed OIC.
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APPENDIX A: SATISFYING THE
IMPEDANCE MODEL

By applying the control law (25) and (26) to the robot dynamics
(27) and substituting ud from (6), we get:

�̃xq + ŴR(qd, q̇d, q̈d)− JTRdFext = ŴR(q, q̇, q̈). (A1)

Using Taylor series expansion and (13), (A1) can be rearranged
as:

JTRdFext = �̃xq +MRd
˜̈q+

∂ŴR

∂q̇

⌋

q=qd ,q̇=q̇d

˜̇q+
∂ŴR

∂q

⌋

q=qd ,q̇=q̇d

q̃

= MRd

[
0 �

]˜̇xq +
[
�P �D

]
x̃q, (A2)

where:




� =
[
�1 �2

]
,

�P = ∂ŴR
∂q

⌋
q=qd ,q̇=q̇d

+�1,

�D = ∂ŴR
∂q̇

⌋
q=qd ,q̇=q̇d

+�2.

(A3)

The following equations can be derived from (20):

x̃q ≅

[
J6
Rd

0

J̇6
Rd

J6
Rd

]−1

x̃6 =
[ (

J6
Rd

)−1
0

−
(
J6
Rd

)−1
J̇6
Rd

(
J6
Rd

)−1 (
J6
Rd

)−1

]
x̃6 = T

q
6 x̃6 ,(A4)

˜̇xq ≅ Ṫ
q

6 x̃6 +T
q
6
˜̇x6 . (A5)

Thus, (A2) can be written as:

JTRdFext = MRd

[
0 �

]
T

q
6
˜̇x6

+MRd

[
0 �

]
Ṫ

q

6 x̃6 +
[
�P �D

]
T

q
6 x̃6 . (A6)

(A6) is corresponding to the LTV impedance model (8), if:





Mimp = (J6
Rd
)−TMRd(J

6
Rd
)−1,

Bimp = (J6
Rd
)−T�D(J

6
Rd
)−1 − 2MimpJ̇

6
Rd
(J6
Rd
)−1,

Kimp = (J6
Rd
)−T�P(J

6
Rd
)−1 −

(
MimpJ̈

6
Rd

+ BimpJ̇
6
Rd

)
(J6
Rd
)−1.

(A7)

APPENDIX B: CHOOSING LQR GAINS

Matrices �6 and�6 have diagonal weights:

{
�6 = Diag (Q61,Q62,Q63,Q64) ,

�6 = Diag (R61,R62) ,
(A8)

where these weights are chosen such that the cost function results
in the allowable error associated with the state or effort, in other
words:

{
Q6,i = y−2

tol,i
(i = 1..4),

R6,j = cF−2
tol,j

(j = 1..2),
(A9)

TABLE A1 | Experimental values of the OIC coefficients.

ytol1 ytol2 ytol3 ytol4 Ftol1 Ftol2 c

1
90 m 1

30 m 1 m/s 100
32 m/s 10 N 10

3 N 1

TABLE A2 | Experimental values of the SOIC coefficients.

Mimp1 Mimp2 ytol1 ytol2 Ftol1 Ftol2

2.2 kg 2.2 kg 1
90 m 1

30 m 10 N 10 N

in which ytol,k and Ftol,k are the allowable amount of the
kth element of the state (̃x6) and effort (�6) vector errors,
respectively. These weights should also be adjusted such that
the (A7) results in positive definite impedance gains. Coefficient
c > 0 will be controlled by the therapist to adjust the effort/state
balance. The coefficients of the experiments for the OIC are given
in Table 1.

APPENDIX C: STANDARD OPTIMAL
IMPEDANCE CONTROL

For the robot dynamics (27), using nonlinear feedback
linearization (inverse dynamics approach), we define the control
law as (Siciliano et al., 2009):

TR = JTRFext + ŴR(q, q̇,y), (A10)

where y is the outer loop control law and is defined such that
it changes manipulator behavior to a linear impedance under
interaction force error. In other words, it is desired to have
the linear impedance model in the operational space as in (8)
with time invariant coefficients. This impedance model can be
achieved if the outer loop control law is defined as:

y = J−1
R R6M

−1
imp

(
Mimp(ḃ− J̇6R q̇)+ Bimp

˜̇ρ6 + Kimpρ̃
6 + F̃6

ext

)
,

(A11)
where:





ḃ = RT
6 ρ̈d − ˙̟ 6 ρ̃6 + ̟6̟6 ρ̃6 + ̟6R

T
6(JRq̇− 2ρ̇d),

J̇6R = RT
6 J̇R − ̟6R

T
6JR,

Ṙ6 = ̟6R6 ,

̟6 =
[

0 −θ̇6

θ̇6 0

]
.

(A12)
For this controller, with a predefined diagonal mass coefficient
matrix, the standard optimum stiffness and damping are as
follows (Hogan, 2017):





Mimp = Diag
(
Mimp1,Mimp2

)
,

Bimp = Diag
(
Ftol1
ytol1

, Ftol2ytol2

)
,

Kimp = Diag
(√

2Ftol1Mimp1

ytol1
,
√

2Ftol2Mimp2

ytol2

)
.

(A13)

The coefficients of the experiments for the SOIC are given in
Table 2.
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