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Abstract

The main objective of this research is the development of a flexible test-bench for

evaluation of hybrid electric powertrain controllers. As a case study, a real-time near-

optimal powertrain controller for a series hybrid electric vehicle (HEV) has been designed

and tests.

The designed controller, like many other optimal controllers, is based on a simple model.

This control-oriented model aims to be as simple as possible in order to minimize the

controller computational effort. However, a simple model may not be able to capture the

vehicle’s dynamics accurately, and the designed controller may fail to deliver the anticipated

behavior. Therefore, it is crucial that the controller be tested in a realistic environment.

To evaluate the performance of the designed model-based controller, it is first applied to

a high-fidelity series HEV model that includes physics-based component models and low-

level controllers. After successfully passing this model-in-the-loop test, the controller is

programmed into a rapid-prototyping controller unit for hardware-in-the-loop simulations.

This type of simulation is mostly intended to consider controller computational resources,

as well as the communication issues between the controller and the plant (model solver).

As the battery pack is one of the most critical components in a hybrid electric powertrain,

the component-in-the-loop simulation setup is used to include a physical battery in the

simulations in order to further enhance simulation accuracy. Finally, the driver-in-the-loop

setup enables us to receive the inputs from a human driver instead of a fixed drive cycle,

which allows us to study the effects of the unpredictable driver behavior.

The developed powertrain controller itself is a real-time, drive cycle-independent con-

troller for a series HEV, and is designed using a control-oriented model and Pontryagin’s

Minimum Principle. Like other proposed controllers in the literature, this controller still

requires some information about future driving conditions; however, the amount of infor-

mation is reduced. Although the controller design procedure is based on a series HEV with

NiMH battery as the electric energy storage, the same procedure can be used to obtain

the supervisory controller for a series HEV with an ultra-capacitor.
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By testing the designed optimal controller with the prescribed simulation setups, it is

shown that the controller can ensure optimal behavior of the powertrain, as the dominant

system behavior is very close to what is being predicted by the control-oriented model. It is

also shown that the controller is able to handle small uncertainties in the driver behavior.
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Chapter 1

Introduction and Background

The automotive industry is endlessly striving to improve vehicle design. One of the main

topics of interest in vehicle design is fuel economy. Although Electric Vehicles (EVs) show

strong potential to become the anticipated green vehicles, the automotive industry is still

facing difficulties in developing EVs. High price and limited drive range are the major

drawbacks of these vehicles. Although the improvement of electrical storage technologies

may overcome these drawbacks, we cannot expect to have so many EVs on the roads in

the near future. Instead, as a short-term solution for the problems of fuel consumption

and emissions, Hybrid Electric Vehicles (HEVs) are among the best candidates.

To drive a hybrid electric vehicle, the internal combustion engine (ICE) is assisted

by the electric driveline. This assistance can be in various ways, as shown in Figure

1.1. Regardless of the architecture, the source of energy in HEVs is still fossil fuel, yet a

reduction in fuel consumption and emissions can be achieved for the following reasons:

1. In an HEV, it is possible to use a smaller (and more efficient) engine due to the

assistance of the electrical propulsion systems.

2. The electrical storage in an HEV can be charged using an external source (in plug-in

HEVs), which reduces the fuel consumed.
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3. The presence of an electrical path in the powertrain allows the vehicle to capture

part of its kinetic energy during braking and reuse it when needed.

4. Extra degrees of freedom in the powertrain allow the engine to work at higher effi-

ciency points.

HEVs have proven to be more fuel efficient than conventional vehicles. However, higher

fuel economy cannot be achieved without an intelligent plan (the so called supervisory

controller) to decide on the power flow in the hybrid electric powertrain. Design and

testing of such optimal supervisory controllers has been an interesting research topic in the

past decade. The objectives of this research fall into this category: design and evaluation

of an optimal, real-time supervisory controller for a series hybrid electric vehicle.

1.1 HEV Optimal Control Problem in the Literature

There are major challenges in designing an optimal HEV powertrain controller. First, the

complexity of the system under control presents a challenge, and second, the uncertainty

associated with the system input (i.e., the driver commands) increases this difficulty. The

powertrain controller should command each component in such a way that the fuel con-

sumption and/or emission is minimized while the driver command is followed, and the

physical constraints of the system are not violated. In the early stages of the development

of HEVs, rule-based supervisory controllers were used; these plans, although being robust

and simple to implement, do not necessarily result in optimal behavior and are difficult to

tune.
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Figure 1.1: Different configurations in hybrid electric powertrains

Studies show that even a small reduction of 3% in HEVs fuel consumption will save
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at least 6.5 million gallons of gas annually in the United States [1]. This has been the

motivation for many researchers to approach model-based controllers in recent years, as

these controllers have the potential to provide much higher fuel economy compared to

rule-based controllers [2]. Application of model-based controllers is widely studied in the

literature, and numerous methods have been presented to find the optimal supervisory

controller.

Among these model-based controllers are brute-force numerical methods that provide

the global optimal solution to the problem. Dynamic Programming [3]-[7], Particle Swarm

Optimization (PSO) [8], and Genetic Algorithms (GA) [9] are examples of such methods.

Since these methods require exact information about the driver command for the entire trip,

which is unknown for practical applications, they cannot be used in real-time applications.

Moreover, these methods are computationally costly, and are optimal only for the drive

cycle they are solved for. On the other hand, their guaranteed globally optimal solution

can be used as a benchmark for other controllers.

To design near-optimal controllers that can be used in real-time, Stochastic Dynamic

Programming (SDP) [10, 11], Game Theory (GT) [12]-[14], and Model Predictive Control

(MPC) [15]-[17] are used. These controllers can provide sub-optimal yet satisfactory results

[16]; however, they still rely on some information about the driving conditions, such as

statistical data (SDP) or short term drive cycle (MPC). Moreover, these methods are still

computationally costly and require special approaches to reduce the computational time.

An example of such an approach is the combination of analytical and numerical methods

[4].

Besides the numerical methods mentioned above, analytical optimal control methods

are useful in HEV powertrain controllers as well. Pontryagin’s Minimum Principle (PMP)

is a branch of optimal control theory, in which the minimization of the integral cost (total

fuel consumption) is reduced to local minimization of the Hamiltonian. The Hamiltonian is

formed by augmenting the integral cost with a set of Lagrange multipliers (or the costates

in optimal control theory) and state equations [18]. The reduction from the integral cost

4



minimization to the instantaneous Hamiltonian minimization is the key feature in Pontrya-

gin’s Minimum Principle that makes it a useful approach for developing HEV powertrain

controllers. Since the formulation of the PMP presents an analytical procedure for this

reduction, the minimization process would be much faster than the numerical methods

mentioned above.

Many works in the literature have shown the usefulness of the PMP in HEV applications

[3], [19]-[22]; however, optimality of the solution strongly depends on the costate values.

The effect of the value of the costate is shown in [19]-[23]. In fact, the costates are the

parameters that must be tuned based on the drive cycle, and their value will change from

one drive cycle to another. Thus, the costates can only be calculated precisely if the whole

drive cycle is known in advance. The dependency of the costate on the drive cycle has been

the most important drawback of this approach. Estimation of the costate without exact

knowledge of the drive cycle is an ongoing research topic, and one of the contributions of

this thesis falls in this category.

Lastly, the Equivalence Consumption Minimization Strategy (ECMS) is a heuristic yet

promising method for HEV controller design [3], [5], [24]-[26]. In ECMS, the battery power

is interpreted as an imaginary fuel consumption rate by using an equivalence factor: S.

Then the optimal control at each instant, u∗, is chosen so that the total fuel consumption

rate in (1.1) is minimized.

u∗ = arg min {ṁ+ SPbattery} (1.1)

In this relation, ṁ and SPbattery are the actual and the imaginary fuel consumption

rates, respectively. It has been shown that if the value of the equivalence factor is cho-

sen properly, the outcome of the ECMS is optimal [3], [25]. In these cases, the total fuel

consumption in (1.1) is similar to the Hamiltonian introduced by the PMP, and the equiv-

alence factor is tightly related to the costates. Thus, the optimal behavior of the controller

is based on finding an optimal equivalence factor.
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Regardless of the method chosen for designing the powertrain controller, the designed

controller has to be evaluated in a realistic environment. It is obvious that applying a

newly-designed controller to a real vehicle is unwise. Such an evaluation is extremely costly,

and may be even unsafe. Therefore, controller testing platforms need to be employed to

evaluate the controller, before it can be applied to the real system.

1.2 Hardware-in-the-loop Simulation Setups in the Lit-

erature

Software simulation is the most widely used test method for controllers. In software sim-

ulations, a high-fidelity model is used to emulate the real system. However, some features

of the real control loop cannot be studied by just software simulations. To further investi-

gate the details of a control loop and enhance the simulation fidelity, the completion of a

hardware-in-the-loop simulation is recommended.

Unfortunately, there is no consistent definition for hardware-in-the-loop simulation

among researchers. As soon as a piece of hardware (either a controller or a physical

component) is included in the simulation loop, it may be called a hardware-in-the-loop

simulation. In this thesis, however, it is preferred to denote different types of simulation

with different names.

Within this study, the simple software simulation that only includes the controller and

the high-fidelity model is referred to as the model-in-the-loop (MIL) simulation. In this

type of test, all simulations are done in one computer; hence, real-time issues, such as

controller-plant communications are ignored. The schematic of the different simulation

setups are displayed in Figure 1.2.

The method of simulation in which the controller code is programmed into an individual

processing unit (the so-called rapid prototyping controller) is called a hardware-in-the-loop

(HIL) simulation. In this type of test, the high-fidelity model of the plant is solved in

6
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Figure 1.2: Schematic of the different simulation setups

real-time using a powerful computer. Since the simulations are done in real-time, they

make it possible to see the effects of the limitations in the controller computational re-

sources. Moreover, the effects of communication between the controller and the plant can

be studied. To obtain more accurate simulation results from this simulation setup, the

controller hardware and the plant-controller communication medium are most beneficial

to be similar to the real-systems.

The next simulation setup that is studied in this research is the component-in-the-loop

(CIL) test-bench. The CIL setup is intended to include physical components (such as the

battery or the electric machines) in the control loop in order to enhance the fidelity of the

simulations.
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Lastly, driver-in-the-loop (DIL) is a simulation in which the human driver inputs are

received by a driver interface, and the commands are sent to the simulations. With this

setup, it is possible to study the effects of the human driver behavior (such as random

changes in speed resulting from variations in traffic) on the performance of the powertrain

controllers.

In HEV applications, hardware-in-the-loop (in general term) is a popular topic. In

[27]-[29], HIL simulations have been used to evaluate designed controllers for a variety of

vehicle types such as HEV, hybrid fuel-cell/battery vehicle, and plug-in HEV.

The CIL simulation setups, however, can be used in a wider range of applications. For

example, in [30] and [31], the CIL simulations are used to validate the controller designed

for fuel cell and electric machine, respectively, whereas in [32]-[35], the CIL simulation setup

has been used for different applications such as component sizing and model verification,

feasibility study, and HEV controller validation.

One of the important features of the CIL setups is the size of the components. In many

of the CIL setups, the components used are not the same size as the component in the

real system; therefore, the simulations have to be designed in such a way to consider the

scaling of the components. In [36], the components in the HEV powertrain can be scaled

to an arbitrary size using Buckingham’s Pi theorem. The same procedure will be employed

in chapter five for component scaling in our CIL simulation setup.

1.3 Thesis Outline

This thesis includes the remaining six chapters. In chapter 2, the design procedure and

tuning method for a series HEV powertrain controller is presented. Chapters 3-6 are related

to controller testing procedures. Chapter 3 discusses the model-in-the-loop simulations for

the series HEV controller evaluation, and chapter 4 presents the details of the hardware-

in-the-loop simulation setup. In chapter 5, the details of the component-in-the-loop setup

and its application in HEV controller design and evaluation are presented. The last test,

8



the driver-in-the-loop simulation, is discussed in chapter 6. Finally, chapter 7 presents the

conclusion of this thesis and future works.
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Chapter 2

Optimal Power Management

Controller for a Series HEV

Most of the materials in this chapter have been published in [37] or are sub-

mitted for publication in [38].

Due to the redundancy in hybrid electric powertrains, there has to be a supervisory

controller to decide how much power each component has to produce. As each component

in the HEV powertrain behaves differently in different conditions, the optimality of the

system strongly depends on the amount of effort each component is applying. Model-based

controllers have the potential to deliver the optimal solution, provided that the control-

oriented model captures enough information about the powertrain. This chapter presents

the design of an optimal model-based controller for a series HEV powertrain controller.

2.1 Control-Oriented Model

The mathematical representation of the hybrid powertrain is the core of the model-based

controller design. It is essential that this control-oriented model be simple enough so

10
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Figure 2.1: Schematic of a series HEV

that the computation time remains within real-time requirements. At the same time, this

model should be able to represent the vehicle accurately enough to capture important

characteristics of the powertrain.

In this work, a series HEV is studied (Figure 2.1). For designing the controller, a

backward quasi-static model for the powertrain is used to calculate the required power

based on the vehicle’s velocity. This power is then used as the input to the optimization

problem.

The longitudinal vehicle dynamics is modeled as (2.1).

mvax = fT − (fD + fR +mvg sin(γ)) (2.1)

To find the power demand, (2.2) is used with fD and fR, defined in (2.3) and (2.4),

respectively.

Pd = vxfT = vx(mvax + fD + fR +mvg sin(γ)) (2.2)

fD =
1

2
ρv2xACd (2.3)
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fR = mvg cos(γ)frr (2.4)

In the above equations, mv is the vehicle mass; vx and ax are the longitudinal velocity

and acceleration respectively; fT is the traction force, resulting from the torque on the

wheels; fD is the aerodynamic drag force; fR is the equivalent rolling resistance of all

wheels, frr is the rolling resistance coefficient, and the term mvg sin(γ) is the resistive force

due to the slope of the road, γ. ρ, A, and CD are air mass density, vehicle frontal area, and

drag coefficient, respectively. Numerical values for all the parameters used in this study

are given in Appendix A.

To model the hybrid powertrain, quasi-static models of each component are used [22].

The following sub-sections present the model of each component.

2.1.1 Nickel Metal Hydride Battery

As a simple realization for control purposes, a circuit model can be used for the battery

modeling, Figure 2.2. In HEV applications, the battery works in a narrow window of state

of charge, typically between 50% to 70%. Therefore, the change in the battery voltage (Voc)

is negligible, and Voc can be considered constant. Figure 2.3 shows the simulation results

for an accurate chemistry-based NiMH battery model [39], which justifies the assumption

of constant Voc for this simple model.

12



SoC

O
p

en
 C

ir
cu

it
 V

ol
ta

ge
 (

V
ol

t)

2%

Figure 2.3: Simulation results for the open circuit voltage versus the state of charge in a

NiMH battery pack [40]

Considering Q as the battery capacity and i as the current passing through it, the

derivative of state of charge (SoC) can be written as:

˙SoC = − i

Q
(2.5)

The negative sign in (2.5) states that a positive current discharges the battery, and a

negative current charges it. For the simple model of Figure 2.2 the battery terminal power,

Pb, is found using (2.6).

Pb = iVoc −Ri2 (2.6)

In the above relation, Voc is the battery open circuit voltage, and R is the total of internal

and terminal resistances of the battery.

By substituting i from (2.6) into (2.5), the time derivative of the state of charge becomes:

˙SoC =
−Voc +

√
V 2
oc − 4RPb

2RQ
(2.7)
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In this HEV model, the only state is the battery state of charge. The control parameter

is chosen to be the battery power, thus:

x , SoC (2.8a)

u , Pb (2.8b)

ẋ =
−Voc +

√
V 2
oc − 4Ru

2RQ
(2.8c)

2.1.2 Engine-Generator

One of the major advantages of the series HEV architecture is that the engine is not me-

chanically connected to the driveline. Instead, it is coupled to a generator, allowing the

engine speed to be chosen arbitrarily so that the engine works in the minimum Brake

Specific Fuel Consumption (BSFC) point for every output power. If this minimum fuel

consumption rate is plotted versus the generator output power, the outcome is a linear rela-

tion. Figure 2.4 shows the simulation results conducted on a mean-value engine model [41]

coupled to a permanent magnet DC generator. In such conditions, the fuel consumption

rate can be approximated as

ṁ = αPgen + β (2.9)

with α and β being constants.

2.1.3 Electric Motor

One or more electric machines are responsible to drive the wheels. These machines can be

modeled as power transducers that convert the electrical power to mechanical power and

vice versa. Losses in the driveline and the motors can be modeled with a single efficiency

using (2.10). It is also assumed that only a fraction of the kinetic energy (50 percent in this
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study) is restored during regenerative braking. It should be noted that this assumption

does not have any effect on the general behavior of the vehicle.{
Pe = Pd η

−1
m Pd > 0

Pe = 1
2

(Pd ηm) Pd < 0
(2.10)

In this equation, ηm is the total efficiency of the driveline from the electric motor to the

wheels. Comparisons made between this simple model and a high-fidelity HEV model

showed that a constant value of ηm can be accurate enough for control purposes.

2.1.4 Electrical Bus

The electric bus consists of the power electronic drivers for the motor and the generator.

Neglecting losses, the balance of the energy in the electric bus can be written as:

Pgen + Pb = Pe (2.11)

In this relation, the positive values indicate that the power is flowing from the powertrain

toward the wheels, and the negative sign shows that the power is reversed. It is obvious

that the generator power cannot be negative.
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Although this model is very simple, with only one state, it will be shown that this

model is capable of providing enough accuracy for the purpose of the model-based control.

2.2 Optimal Control Problem

The goal of the supervisory controller in this study is to minimize fuel consumption. There-

fore, a cost function of the form (2.12) is considered.

J =

∫ tf

0

ṁ dt (2.12)

By combining (2.6), (2.8), (2.9), (2.10), and (2.11) with (2.12), the cost function can

be written as:

J =

∫ tf

0

[α(Pe − u) + β] dt (2.13)

The physical constraints of this powertrain are

xmin < x < xmax (2.14a)

Pbmin < Pb < Pbmax (2.14b)

0 < Pgen < Pgenmax (2.14c)

It is possible to write (2.14b) and (2.14c) as a single constraint on the control by

combining them with (2.11) and (2.6). Therefore, the constraints on the control would be

umin = max
{
Pbmin , Pe − Pgenmax

}
(2.15a)

umax = min
{
Pbmax , Pe,

V 2
oc

4R

}
(2.15b)

umin < u < umax (2.15c)

The optimal control problem can now be defined as follows: Find the optimal control,

u, such that the cost function (2.13) is minimized while the constraints (2.16) are satisfied.

16



ẋ =
−Voc +

√
V 2
oc − 4Ru

2RQ
(2.16a)

x (0) = x(tf ) = xref (2.16b)

x ∈ X , X = [xmin, xmax] (2.16c)

u ∈ U , U = [umin, umax] (2.16d)

This is a deterministic optimization problem, since it is assumed that the input (elec-

trical power demand Pe) is known for all t ∈ [0, tf ]. To solve this problem, Pontryagin’s

Minimum Principle (PMP) [18] can be used. In the PMP formulation, the Hamiltonian is

defined according to (2.17).

H =

[
α(Pe − u) + β

]
+ λ

(
−Voc +

√
V 2
oc − 4Ru

2RQ

)
(2.17)

In this definition, λ is the Lagrange multiplier or the costate, with its dynamics defined by

(2.18).

λ̇ = −∂H
∂x

(2.18)

Since none of the battery parameters (Voc, R, and Q) are assumed to be a function of

the state, the costate derivative is zero, and the costate holds its initial value to the end

of the mission.

λ̇ = 0 (2.19)

Pontryagin’s Minimum Principle converts the integral minimization of (2.13) to an

instantaneous minimization of the Hamiltonian, and states that the optimal control is the

one that satisfies (2.20).

u∗ = arg minu∈U {H} (2.20)
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The solution to this problem is the solution of a two-point-boundary-value (TPBV)

problem, as the initial and final state values are specified but the initial (and constant)

costate value is unknown. The shooting method is a relatively fast and simple method

for this TPBV problem, in which the unknown initial conditions are guessed and the

differential equations are integrated to the final time. If the final values found are close

enough to the specified values, the solution has been reached. Otherwise, the initial guess

is changed and the whole process is repeated until the final criterion is met within the

desired tolerance.

For this method, a discrete-time version of dynamic equations is considered as in (2.21).

x[k + 1] = x[k] +
−Voc +

√
V 2
oc − 4Ru[k]

2RQ
(2.21)

The costate, λ, is the value to be guessed in this problem. At each step of integration,

and with known values of x[k] and λ, the control range [umin, umax] is identified. In this

range, the value of u that minimizes the Hamiltonian is chosen as the optimal control

value, u∗[k]. Then with this value, (2.21) is integrated (forward Euler integrator) to the

next step. This solution continues to the final time, when x(tf ) is found. If x(tf ) 6= xref ,

the guess for the costate is modified and the whole process is repeated until x(tf ) is close

enough to xref .

Solving for the correct value of the costate is therefore a lower level optimization prob-

lem: find the costate, λ, in such a way that (x(tf ) − xref )2 is minimized. This problem

can easily be solved using available software packages such as the optimization toolbox in

Matlab.

Since at each time the control value is chosen from the range [umin, umax], the control

constraint is essentially satisfied. However, considering the state inequality constraint

(2.16c) is a more challenging process. This constraint can be written as the inequality

G(x, t) < 0, with G defined as:
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G = (x− xmin)(x− xmax) (2.22)

Whenever this constraint is active (i.e., G ≥ 0), the necessary conditions in the PMP

must be slightly altered. In such a case, the optimal control value is identified as:

u∗ = argminu∈U

{
H + µĠ

}
, U =

{
[umin, umax] | Ġ = 0

}
(2.23)

where µ is a positive number, and Ġ is the time derivative of G:

Ġ = ẋ(x− xmax) + ẋ(x− xmin) = ẋ(2x− xmin − xmax) (2.24)

Ġ = 0⇒ ẋ = 0⇒ u = 0⇒ U = {0} (2.25)

Therefore, the optimal control, u∗, is zero in active constraint regions. The details and

proof of this method are available in [42, § 2.5]

This method can be explained heuristically; whenever the state of charge (x) reaches

its boundaries, the battery cannot be charged (or discharged), and the admissible control

is zero to prevent it from being over-charged (over-discharged).

2.3 Optimal Feedback Control

At every time step, the value of the control in [umin, umax] that minimizes the Hamiltonian

is chosen as the optimal value. Since at each time step the state, the costate, and the

power (x, λ and Pe in (2.17)) have certain values, the Hamiltonian takes a convex form in

terms of the control, u.
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∂H
∂u

= −α +
λ

2RQ

[
− 2R√

V 2
oc − 4Ru

]
(2.26)

∂2H
∂u2

= −2λR

Q

1

(V 2
oc − 4Ru)

3
2

> 0 (2.27)

∂H
∂u

= 0⇒ ū ,
1

4R

(
V 2
oc −

λ2

α2Q2

)
(2.28)

In (2.28), it can be seen that the Hamiltonian has only one extremum at ū. For stable

shooting method solutions, the costate has to be negative, thus, the second derivative in

(2.27) will be positive, resulting in a convex function.

It is worth noting that by using the shooting method, the global optimality of the

solution is guaranteed. That is because there is only one solution candidate, and if the

choice of the costate satisfies the final boundary conditions, the solution is unique, thus

globally optimal.

The quadratic form of the Hamiltonian also implies that the minimum of H happens

either at a boundary value of u (namely umin or umax), or when ∂H
∂u

is zero, (2.28). These

conditions are shown in Figure 2.5. According to (2.29), ū has a constant value throughout

a mission.

dū

dt
= − 1

2Rα2Q2

(
2λλ̇

)
= 0 (2.29)

In fact, ū is the governing parameter in this problem, and can be found by (2.28), using

only battery parameters and the costate value. Therefor, a simple yet optimal feedback

controller can be defined as:

u∗ =


umax umax < ū

ū umin < ū < umax

umin ū < umin

(2.30)
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with umin, umax and ū defined in (2.15a), (2.15b) and (2.28), respectively. The inputs to

this controller are the state (as feedback) and Pe, and the controller determines the optimal

battery power.

The mechanism of the optimal control can be simply explained. When the electric

power demand is negative (during braking) and the SoC is within the admissible range,

the battery absorbs all the available power. When the power demand is positive, but less

than a certain value (ū), the battery provides all the required power. These two conditions

correspond to the first case in (2.30), and are shown in Figure 2.6 (a). When the power

demand is more than ū, only a portion of the required power is delivered by the battery,

and the rest is provided by the generator. This condition corresponds to the second case

of (2.30), and is shown in Figure 2.6 (b). Finally, if the power demand is too high (when

umin > ū or equivalently Pe > Pgen,max + ū), the battery provides more power than ū to

drive the vehicle. This corresponds to the last case in (2.30), and is shown in Figure 2.6

(c). When the SoC is less than its minimum allowable value, the battery will not provide

any power, and when SoC is more than its maximum allowable value, it will not absorb

electrical power.

As was mentioned earlier, the most important parameter in this controller is the costate

(which in turn determines ū). In the next section, a simple method is presented to find
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Figure 2.6: The mechanism of the optimal supervisory controller

the proper value of the costate and ū.

2.4 Costate Estimation Method

For optimal behavior, it is necessary to have the future driving condition. Without such

information, only sub-optimal behavior is achievable [2]. In this study, it was observed

that it is not necessary to consider the whole drive cycle. Instead, if only the driving

condition until the next stop (stop-to-stop (STS) cycle) is known, it is possible to obtain

a solution that is almost as optimal as the solution found considering the whole drive

cycle. An example is presented in Figure 2.7, with the FTP75 drive cycle shown in the top

plot, and the SoC shown in the bottom plot for two different control strategies. To obtain

these results, the PMP was solved once for the full drive cycle, and once for successive

STS cycles when the final state was required to be xref at the end of each STS cycle. A

comparison of the resultant fuel consumption for various drive cycles is presented in Table

2.1, which shows negligible difference in fuel consumption between full drive cycle and STS

cycle optimization.

The costate value is the only parameter that should be tuned for these STS cycles.
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Figure 2.7: State trajectory when considering the full drive cycle, and when considering

STS cycles

Since the optimal control mechanism is independent of the driving condition, it is only the

charge sustenance that should be considered in tuning the costate.

The mechanism mentioned earlier follows one important concept: it tries to capture

as much negative energy as possible, thus elevating the SoC. To discharge the battery to

its initial charge level, the controller decides that a certain amount of power has to be

provided by the battery during acceleration and cruising. This certain amount is ū found

in (2.28).

Table 2.1: Fuel consumption for the two methods

FTP75 HUDDS EUDC NYCC LA92

Full drive cycle (g/cycle) 274.8 154.4 257.5 31.69 308.5

STS cycles (g/cycle) 275.1 154.6 257.6 31.89 308.8

Increase in fuel consumption 0.10% 0.12% 0.04% 0.63% 0.10%
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It should be noted that in both solutions shown in Figure 2.7, the mechanism of the

optimal controller is the same, as is the amount of regenerative braking absorbed by the

battery. The only cause for the change in fuel consumption is the small change in bat-

tery losses. When the whole drive cycle is considered, the optimal control adjusts ū so

that the battery losses are minimized over the whole mission. But when the STS cy-

cles are considered separately, the controller changes ū for each cycle, thereby increasing

the charge/discharge rate of the battery, the battery loss, and finally, the total fuel con-

sumption. It was observed that by changing battery parameters (so that the the battery

efficiency is decreased), the difference in fuel consumption between the two methods be-

comes more noticeable. However, with reasonable battery parameters, the difference is

small, as in Table 2.1.

The objective is now to estimate the costate (or equivalently ū) for each of the STS

cycles to satisfy charge sustenance. A typical plot of electric power demand, Pe, and the

corresponding battery power, u, is shown in Figure 2.8. To have the SoC at the same level

at the beginning and end of the cycle, the total change in the battery energy (the integral

of the shaded area) must be zero, i.e.:

En + Ep = 0 (2.31)

where En represents the total negative energy absorbed by the battery, and Ep is the total

energy delivered to the powertrain by the battery.

As was observed in simulations of different standard drive cycles, ū has a relatively small

value (usually less than 5kW). In most of the times when the power demand is positive,

it is greater than ū; thus the optimal battery power is equal to ū in a great portion of the

drive time. Therefore it is reasonable to assume the battery power is equal to ū, which

leads to

Ep =

∫
tp

udt ' tpū (2.32)
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In (2.32), tp is the time when power demand is positive. Combining (2.32) and (2.31)

gives

ū = −En
tp

(2.33)

If the relations (2.28) and (2.33) are considered together, the value of the costate that

satisfies charge sustenance requirements, λ∗, can be found as in (2.34).

− 4Rū+ V 2
oc =

λ∗2

a2Q2
⇒ λ∗ = −aQ

√
V 2
oc + 4R

(
En
tp

)
(2.34)

Relations (2.33) and (2.34) relate the optimal values of λ and ū to only two parameters

of the drive cycle: the total negative energy available and the time when positive power is

required. During the simulations, it was observed that the optimal value of ū is independent

of the order of events. For example, it is not necessary to know when the driver is going

to push the brake pedal; it is only important to know how much kinetic energy is going to

be transferred to electrical energy before the next stop. This behavior can be justified by

(2.33), which is only a function of total energy and time.

In equation (2.31), it is assumed that the final SoC should come back to its initial

level. If (due to any kind of error) the initial SoC has a value different from the desired
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SoCref , then the feedback controller tries to bring it back to the initial value, not SoCref .

To compensate for this error, the difference in the battery energy should be considered as

in

En + Ep = Eres (2.35)

with Eres being the amount of energy that the battery should absorb or release. Eres can

be estimated using (2.38) by assuming constant Voc.

Eres = Q

∫ SoCref

SoC0

[dSoC Voc(SoC)] (2.36)

Eres ' QVoc

∫ SOCref

SoC0

dSoC (2.37)

Eres ' QVoc∆SoC (2.38)

Therefore, ū and λ can more robustly be approximated using:

ū = −En − Eres
tp

(2.39)

λ∗ = −aQ
√
V 2
oc −

4R

tp
(En +Q(x0 − xref )Voc) (2.40)

As mentioned in Chapter 1.1, the ECMS can be optimized using the PMP approach.

In this case, the equivalence factor is tightly related to the costate. Therefore, it is possible

to find the optimal value of the equivalence factor at each instant using the costate found

by the method presented in this paper.

Although the costate estimation method still requires certain information about future

driving conditions, it is a less demanding problem than finding the exact speed profile. It is

possible to estimate cruise times using ITS and GPS systems; the available negative energy

is related to vehicle kinetic energy during braking, which can also be estimated using the

longitudinal vehicle dynamics [43].
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Figure 2.9: Ultra-capacitor circuit model

2.5 Comments Regarding Use of Ultra-Capacitor in

HEVs

An ultra-capacitor (UC) can be a good option for an HEV electrical energy storage system,

as it has higher efficiency and power-density, and much longer lifetime compared to NiMH

and Li-ion batteries. In contrast, an UC’s relatively low energy-density and internal energy

dissipation make it inappropriate for EV and PHEV applications [44].

UCs can be modeled using RC circuits (Figure 2.9(a)), and the number of the RC

branches determines the accuracy of the model [45]. Since increasing the number of the

branches increases the number of the states of the system, a simple RC circuit is suitable

for the control-oriented model (Figure 2.9(b)). This model can still capture enough details

about the UC behavior. For such a model, the relationship between the capacitance voltage,

VC , and the current, i, can be written as

V̇C = − i

C
(2.41)

with C being the capacitance. Considering the capacitance voltage as the state of the

system and the current as the control, the state equation is found to be according to

(2.42).

ẋ = − u
C

(2.42)
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Equation (2.43) defines the UC output power, PUC , in terms of the state and the control.

PUC = ux−Ru2 (2.43)

In the above relation, R is the UC equivalent series resistance.

Based on this modified HEV model, the new cost function and Hamiltonian can be

written as in (2.44) and (2.45), respectively [37].

J =

∫ tf

0

[
α(Pe − xu+Ru2) + β

]
dt (2.44)

H =

[
α(Pe − xu+Ru2) + β

]
+ λ(− u

C
) (2.45)

The costate is no longer constant, and is governed by the dynamic equation:

λ̇ = −∂H
∂x

= αu (2.46)

When using an UC, similar to the case that a NiMH battery was used, the Hamiltonian

takes a convex form (in the UC case, it is quadratic). Therefore, the arguments regarding

uniqueness and global optimality of the solution are still valid. Moreover, ū (the control

value at which the Hamiltonian has a zero derivative) is a constant value:

dū

dt
=

1

2R

dx

dt
+

1

2RαC

dλ

dt
(2.47)

=
1

2R
(− u
C

) +
1

2RαC
(αu) = 0 (2.48)

Therefore, the optimal supervisory controller has the same logic, except the fact that

the governing parameter, ū, is the UC current, not the power. The optimal UC current

is always the maximum possible current, umax, except when it is higher than ū, in which

case the optimal UC current is ū. Finally, the same method can be used to estimate the

costate initial value and ū, based on the same information (i.e., cruise time and regenerative

energy).
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Figure 2.10: The optimal SoC and control trajectories for the FTP75 drive cycle found

using the PMP solution

2.6 Controller Design Results

In this study, all simulations are conducted in the Matlab environment. The optimal

control problem is solved using the PMP for the FTP75 drive cycle, and control and state

trajectories are shown in Figure 2.10. Note that the optimal control value is the same as

umax but is limited to a constant value (ū).

For 68 STS cycles listed in Table 2.2, the optimal ū is found, and the correlation between

this parameter and the drive cycle parameters, equation (2.33), is presented in Figure 2.11.

It is interesting to observe that the best linear approximation matches the relation (2.33)

very well.

In Figure 2.12, the state and the control trajectories obtained by three different methods

are shown for a portion of the FTP75 drive cycle. The methods are the PMP solution for

the full drive cycle, the PMP solution for successive STS cycles, and the solution of the

real-time feedback controller with estimated ū. The difference in the first two solutions is
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natural as the constraints of the problem are different. The more interesting result is the

similarity between the solution of the PMP for the STS cycles and that of the the real-

time controller. Although many simplifications are made to estimate ū in the real-time

controller, it gives very close results to the near-optimal PMP solution.

The fuel consumption for different standard drive cycles is presented in Table 2.3. The

first row of the table presents the optimal fuel consumption for the entire drive cycle, and

the second row presents the fuel consumption resulted from the feedback controller with

estimated ū for successive STS cycles. Due to errors in ū estimation, the final state of charge

is not exactly the same as the reference value (the reference value is 0.6). This variation

in final state of charge contributes to increase or decrease in total fuel consumption. To

Table 2.2: List of the standard drive cycles used

drive cycle number of STS cycles drive cycle number of STS cycles

UDDS 17 NYCC 10

US06 5 LA92 16

EUC 5 SC03 5

HUDDS 4 JN1015 3

HWFET 1 IM240 2
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compensate for this error, the fuel consumption is corrected according to (2.49d).

ṁ = αPgen + β (2.49a)∫
ṁ dt =

∫
(αPgen + β)dt (2.49b)

∆m = αEres + βt ' αEres (assuming short time) (2.49c)

∆m = α(QVoc∆SoC) (2.49d)

2.7 Chapter Summary

In this chapter, development of a near-optimal, real-time controller for a series HEV has

been presented. This controller is based on the off-line solution of the optimal control

problem, with known inputs. Pontryagin’s Minimum Principle has been used to solve the

optimal control problem, and the results are shown to be globally optimal. The real-time
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Table 2.3: Comparison of fuel consumption for different drive cycles

FTP75 NYCC EUC HUDDS HWFET

PMP solution for the full drive cycle (g) 274.27 31.520 257.243 154.150 263.272

Feedback controller for the STS cycles (g) 274.68 32.379 256.080 154.368 261.757

Final state of charge 0.6005 0.6034 0.5937 0.6004 0.5925

Corrected fuel consumption (g) 274.577 31.681 257.374 154.286 263.297

Increase in fuel consumption 0.11% 0.5% 0.05% 0.09% 0.01%

controller is then designed based on the mechanism of the optimal controller. The designed

controller can be tuned by adjusting only one parameter, which is related to the drive cycle.

In the end, a method has been provided to effectively estimate the costate from certain

information about the drive cycle.

The simulation results show that the controller in conjunction with the estimation

method can be used in real-time, and the final fuel consumption is very close to the optimal

value.
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Chapter 3

Model-in-the-Loop (MIL) Simulation

Most of the materials in this chapter are submitted for publication in [38].

In the previous chapter, the design of an optimal controller for a series HEV was

discussed, and simulation results were presented. However, the presented simulation results

were found by simulating the simple control-oriented model. Since the model was simplified

to be useful for control development, the results obtained might be different from actual

system behavior. Therefore, to see the performance of the controller, a more complicated

HEV model should be used. This chapter presents the details of the high-fidelity model-

in-the-loop simulations for controller performance evaluation.

3.1 High-Fidelity Model Description

To more accurately evaluate the controller performance, the series HEV is modeled in

the MapleSim environment [39]. MapleSim allows acausal modeling, and does symbolic

calculations to reduce run times. The MapleSim model is presented in Figure 3.1. As can

be seen, the model consists of different components, including the engine, the generator,
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Figure 3.1: High fidelity model for a series HEV in the MapleSim environment

the battery, the electric motor, and a multi-body vehicle. The physics-based models for

these components are presented in the following subsections.

3.1.1 Engine-Generator Set Model

This model uses a mean-value engine model [41], which is accurate enough for this applica-

tion and also is simple enough to allow fast simulations. The engine model, as can be seen

in Figure 3.1, consists of four components: the ECU, throttle, manifold, and engine body.

The ECU block is responsible for adjusting the throttle angle to make the engine deliver

the desired amount of torque. In the throttle and manifold blocks, the pressure and mass

flow rate of the air/fuel mixture is calculated according to [46]:

Ṗm =
RgTm
Vm

(ṁthr − ṁe) (3.1)

where Pm is the pressure of the air/fuel mixture, Tm and Vm are the temperature and

volume of the intake manifold, respectively, Rg is the gas constant, and ṁthr and ṁe are
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throttle mass flow rate and manifold out flow respectively.

Having the mass flow rate and pressure calculated, the engine body block calculates

the thermal efficiency and indicated power. Finally, the engine output power is found

according to:

Pnet = Pind − Ploss − Pload (3.2)

with Pind, Ploss, and Pload being the indicated power, lost power, and internal load power,

respectively.

The engine flywheel is coupled to a permanent magnet DC generator that produces

electricity to charge the battery. The effects of power electronics in the generator electric

drive are neglected in this model. It is assumed that the electric drive is a DC-DC converter

with an efficiency of 100%, [39]. The schematic of the power converter is shown in Figure

3.2. In this system, the power drawn from (or delivered to) terminal 2 is equal to the

amount of power at terminal 1. The PID controller ensures that this power is independent

of variations in terminal voltage due to changes in generator conditions.
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3.1.2 Battery Model

One of the most important components in a hybrid powertrain is the electrical storage. In

the model developed here, a chemistry-based NiMH battery [40] is used to further enhance

the accuracy of the simulations. In this model, cell terminal voltage is calculated using:

vcell = (φc + ηc)− (φa + ηa) + icellRint (3.3)

where vcell is the terminal voltage, and φi and ηi are the electromotive force and over-

voltage, respectively, which are found based on chemical reactions and ion concentrations

in the anode (a) and cathode (c). Rint is the ohmic internal resistance, and icell is the cell

current found using:

icell = Aiailiji (3.4)

where Ai, ai and li are the geometry parameters. ji is defined in (3.5), with F and T being

the Faraday constant and temperature, respectively. i0,i is also calculated based on the ion

concentration at electrodes.

ji = i0,i

(
e

0.5F
RT

ηi − e−0.5F
RT

ηi
)

(3.5)

In (3.4) and (3.5), subscript i should be replaced with c for cathode and a for anode.

3.1.3 Vehicle Dynamics Model

For the electric motor, which is responsible for driving the wheels, a permanent magnet

DC machine is used. Similar to the generator, the effects of power electronics in the motor

electric drive are neglected. The output shaft of this motor is connected to the wheels via

a constant gear ratio.

The vehicle dynamics is simulated by a 14 degree-of-freedom (DOF) multi-body model

with Fiala tires and aerodynamic drag force. The degrees of freedom include six DOFs for
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the body, four DOFs for vertical displacement of the unsprung mass, and four DOFs for

rotation of the wheels. This level of complexity of the model is sufficient to predict the

steering and longitudinal dynamics of the vehicle. The aerodynamic drag force is simulated

using an external load acting on the vehicle’s center of mass, and is calculated using (2.3)

and the vehicle’s longitudinal velocity.

To couple the designed supervisory controller to this high-fidelity model, different com-

ponents of the model are converted to the Matlab/Simulink environment as S-functions,

and are connected together by Simulink signal links. The converted model in Simulink is

no longer an acausal model, since different powertrain components are connected together

by causal Simulink signal links. The next section presents the overview of the control loop

and the way the supervisory controller interacts with other components.

3.2 Low-Level Controllers

The schematic of the converted model can be seen in Figure 3.3. The vehicle dynamics and

the electric motor components from MapleSim are converted together as the new vehicle

dynamics block in Figure 3.3. The driver model is a simple PID controller that adjusts the

motor current to ensure that the vehicle follows the desired speed profile. The outputs of

the vehicle dynamics block are the electric power required to follow the speed profile, Pe,

and the vehicle speed, which is monitored and used as a feedback for the PID controller.

This electric power (consumed by the electric motor or generated during braking) is used

as an input to the supervisory controller. It is also used as a signal to determine the

charge/discharge rate of the battery.
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Figure 3.3: Schematic of the causal HEV model used in the control loop

3.2.1 Engine-Generator Set Controllers

The supervisory controller uses the future traffic information as an input to calculate the

optimal battery power, and in this study, it is assumed that such information is available in

advance for the current STS cycle. Based on the traffic information, instantaneous electric

power demand, Pe, and SoC, the supervisory controller can determine the optimal battery

power using the logic presented in previous chapter. Then the controller uses (3.6) to

calculate the amount of power that the engine-generator set should produce. As long as

the low-level controllers for the engine-generator set provide appropriate tracking of the

set points, tracking of the optimal battery power is guaranteed:

P ∗gen = Pe − P ∗b (3.6)
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Figure 3.4: Optimal engine torque and generator speed versus generator output power

Based on the optimal generator power, P ∗gen, calculated by the supervisory controller,

a pair consisting of the torque and speed is identified to give the maximum efficiency of

the engine-generator set in that output power. To find the optimal torque/speed pairs, the

high-fidelity engine-generator model was simulated a number of times with different pairs

of speed/torque that produce a specific output power. Then the pair that consumed the

lowest fuel was chosen as the optimal pair for that particular power. Figure 3.4 shows the

optimal speed and torque for different output powers.

To make the engine and the generator follow the reference torque and speed, two

controllers have been used. Because of the engine’s non-linear behavior, a sliding mode

controller is used to control the engine torque by adjusting the throttle angle. Moreover,

a PI controller is used to adjust the generator current for controlling the speed.

Sliding mode control has proven to be a reliable method for engine torque management

in practical cases. This is a model-based method, and is capable of handling the model

uncertainties. The main control input for the engine is throttle angle. Other inputs,

like air fuel ratio and ignition timing, highly affect the transient behavior of the engine.

According to legislation to have the best fuel economy and emission for the engine, we are

not allowed to change these two parameters away from their optimum values for a long

time [47]. Therefore, throttle angle is generally more reliable and dominating engine input

to change the steady state response in this case.
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Engine torque management can be done in two ways. The first approach is using an

engine torque sensor to measure crankshaft torque for feedback control. This measurement

includes the effects of the engine combustion torque, friction torque, pumping torque, and

all accessory loads. In this derivation, spark timing and air fuel ratio are used to control

the engine torque. Using these two variables as the inputs, forces them away from the

optimal ranges, as mentioned above. Thus, torque control is not a legitimate option for

the torque management strategy, but it would reduce uncertainties especially in case of

engine aging.

The second approach is to measure and control manifold pressure. Engine combustion

torque is a function of cylinder air flow which is a function of the manifold pressure.

Assuming constant air to fuel ratio and ignition timing, the control goal can be changed

to make the manifold pressure follow the desired value. If the throttle is used to control

manifold pressure, the effect of ignition timing and air to fuel ratio on combustion torque

does affect the throttle control. Thus, the disadvantage of this approach is a larger amount

of calibration required to get a proper conversion from desired torque to desired manifold

pressure for all engine operating conditions. But, use of this strategy will not require a

torque sensor [47].

Here we use the manifold pressure control approach and ignore the effect of transient

torque change for the engine set points so we keep the spark timing and air fuel ratio

unchanged throughout the simulation.

To accomplish this goal, we need a simple model of the engine to be used for designing

the sliding mode controller. A simplified model of the engine is a single input single output

model. The manifold pressure, Pm, is the only state variable and engine indicated torque

is the output:
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Ṗm = −ηvNcylVdω

60NengVm︸ ︷︷ ︸
Aeng

Pm +
RgTm
Vm

(CD ×MA× PRI)︸ ︷︷ ︸
Beng

Ath (3.7a)

Tind = −φηeηvNcylVdHf

60NengRgTm︸ ︷︷ ︸
Ceng

Pm (3.7b)

where Ath is the throttle area, the control input. Throttle area can be found from the

throttle angle, θ, and geometry (d and D are diameter values for input and output vents

and θ0 is the angle when throttle is totally closed):

Ath = − d.D

2

√
1−

(
d

D

)2

+
d.D

2

√
1−

(
d cos θ0
D cos θ

)2

(3.8)

+
D2

2
sin−1

√1−
(
d

D

)2
− D2

2
.

cos θ

cos θ0
sin−1

√1−
(
d cos θ0
D cos θ

)2


In (3.7), ηv is the volumetric efficiency which is a function of manifold pressure and

engine speed, ω. Ncyl is the number of cylinders (four in this case). Vd and Vm are the engine

displacement and air manifold volume respectively. Neng is 2 for a four-stroke engine. CD

is the throttle discharge coefficient.

Also, MA = P0/
√
RgT0 where P0 and T0 are atmosphere pressure and temperature,

respectively, and PRI is a non-dimensional value to consider subsonic and supersonic air

flow (γa is air heat capacity ratio):

PRI =


(
Pm
P0

) 1
γa

√
2γa
γa−1

(
1−

(
Pm
P0

) γa−1
γa

)
for Pm

P0
>
(

2
γa+1

) γa
γa−1

√
γa

(
2

γa+1

) γa−1
γa+1

for Pm
P0
≤
(

2
γa+1

) γa
γa−1

(3.9)
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Lastly, ηe, φ and Hf are engine thermal efficiency (approximately a function of engine

speed and manifold pressure), stoichiometry fuel-air ratio and gasoline heat of combustion,

respectively. Readers are referred to [41] for numeric values of the parameters used in this

engine model.

According to [48] we can define a sliding surface, S

S = Pm − Pm,desired ⇒ Ṡ = Ṗm − Ṗm,desired (3.10)

where Pm,desired is the desired manifold pressure which leads to the desired engine indicated

torque. Therefore, Ṡ can be found as in (3.11).

Ṡ = AengPm +BengAth −
Ṫind,desired
Ceng

(3.11)

where Aeng, Beng, and Ceng are defined in (3.7).

In order to satisfy reachability condition, we use the signum (sgn) function:

SṠ < 0⇒ Ṡ = −ηsgn(S) (3.12)

Now all we have to do is to tune η according to the model uncertainty and operating

conditions. Then the control input will be:

Ath =
1

Beng

(
−ηsgn(Pm − Pm,desired)− AengPm +

Ṫind,desired
Ceng

)
(3.13)

On the generator side, a manually tuned PID controller ensures that the generator

speed follows the reference value by adjusting the generator current. These two controllers

provide power tracking, and at the same time, move the engine operating point to the

minimum BSFC point.
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3.2.2 Battery Controller

The algebraic sum of the power generated by the engine-generator set and the power

consumed (or generated) by the electric motor is used to charge/discharge the battery. A

PID controller is responsible for making the battery follow the reference power by adjusting

the battery current. The NiMH battery model calculates the SoC, and the SoC is sent

back to the supervisory controller as a feedback.

During braking, the battery absorbs part of the kinetic energy, and the SoC increases.

Although not likely with the model-based supervisory controller, the SoC may reach its

upper limit during braking. In such cases, the supervisory controller turns off the regen-

erative braking, and to compensate for that, it increases the mechanical braking effort.

In the model, the extra mechanical braking power is subtracted from the electric power

demand to consider such loss of regenerative braking.

3.3 High-fidelity Model Simulation Results

A model-in-the-loop simulation is done using the presented model to evaluate the designed

controller performance. The input to this simulation is the desired speed profile. The

controller follows the logic in (2.30), and for the calculation of ū, the linear fit in Figure

2.11 is used. In the present work, it is assumed that the necessary information is available

to the controller to estimate ū. The information includes the cruise time (tp) and available

negative energy (En), as is required in the calculation of ū in Figure 2.11.

To compare the behaviors of the control-oriented model and the high-fidelity model,

simulations shown in Figure 3.5 are conducted. The input to both models is the desired

speed profile, and output is the state of charge. The comparison of the two SoC trajectories

for the first 440s of the FTP75 drive cycle is shown in Figure 3.6. It can be seen that the

controller can predict the actual vehicle behavior very well based on the simple control-

oriented model, in spite of the extensive number of simplifications made in its design
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process.

The similarity in SoC trajectories can be explained as follows: the battery state of

charge (as the dominant dynamic behavior of the powertrain) is affected by the battery

power and its internal dynamics. The battery power is the difference of the power demand

and the generator power, Figure 3.5. Therefore, as long as the longitudinal vehicle dynamics

in the control-oriented model is accurate enough, and the engine-generator set follows the

optimal set-points properly, the battery power will be the same as that of the control-

oriented model. The battery dynamics is also accurately approximated by the well-tuned

circuit model. Thus, both models (control-oriented and high-fidelity models) will show

similar behavior, which in turn, means that the outcome of the high-fidelity model is

optimal too.

To see the optimality of the control strategy, the performance of this controller was

compared with that of a PID controller. The idea behind this PID controller is to preserve

the health of the battery as long as possible by minimizing variation of the SoC. The

PID controller keeps the SoC near the reference value by controlling the engine-generator

power. The PID controller is tuned in such a way that the battery is charged in an
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Figure 3.6: State of charge trajectory for the first 440s of FTP75 drive cycle

appropriate time. Besides, the proper tuning of the PID controller allows the battery to

capture and reuse all the available regenerative braking energy. Thus, the only difference

in the PID controller and the optimal controller is the higher battery efficiency in charging

and discharging that affects the fuel consumption. This makes the PID controller a good

candidate for the powertrain controller in terms of fuel efficiency too.

As can be seen in Figure 3.7, the final SoC with the PID controller is higher than

the reference value, because the battery captures the regenerative braking energy at the

end of the drive cycle, when the SoC is close to the reference value. This increased SoC

causes a noticeable increase in fuel consumption, and hinders comparison between this

controller and the optimal controller (which is charge sustaining). To better compare the

fuel consumptions, five successive FTP75 cycles were used to approximate infinite driving

pattern. The results show that the optimal controller gives a fuel consumption of 1504.2

grams, whereas the PID controller resulted in a total fuel consumption of 1607.3 grams.

Thus, fuel consumption is reduced by 6.4% with our model-based controller.

Another way to compare the fuel consumptions is to change ū so that the final SoC

resulting from the optimal controller is equal to the final SoC resulting from PID controller.

For the FTP75 drive cycle, this comparison shows that the optimal controller has a fuel

consumption of 304 grams versus the 324 of the PID controller. In this case, the optimal

controller shows a 6.5% reduction in fuel consumption compared to the PID controller.
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Figure 3.7: Comparison of SoC trajectories for the FTP75 drive cycle for the two controllers

3.4 Chapter Summary

In this chapter, the details of the model-in-the-loop simulation have been presented. For

evaluating the performance of the designed controller, a high-fidelity model is developed

in the MapleSim environment, and the model is exported to the Matlab/Simulink envi-

ronment for controller applications. Low-level controllers are used for each component to

ensure that the components follow the powertrain controller set-points with little error.

The simulation results shows that the powertrain controller can effectively predict the

system behavior, and the high-fidelity model simulations matches the controller prediction

(results of the control-oriented model simulation) very well. This shows that the controller

is able to provide the optimal solution for minimum fuel consumption.
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Chapter 4

Hardware-in-the-Loop (HIL)

Simulation

Hardware-in-the-Loop (HIL) simulation is a well-established method to simulate physical

systems and control loops with higher levels of accuracy. An HIL simulation setup pro-

vides a more realistic environment for controller evaluation purposes, as it can take into

consideration different aspects of the control loop that are neglected in model-in-the-loop

simulations, such as communication issues and controller computational limitations.

Figure 4.1 shows the HIL simulation setup that was developed for HEV powertrain

controller evaluation. In this chapter, the details of the HIL simulation setup will be

discussed.

4.1 Hardware Description

The two core components in an HIL setup are: 1) an independent processing unit to run the

controller procedure, and 2) a powerful real-time processing unit to run the plant model.

For our HIL simulation, the designed controller is programmed into an Electronic Con-
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Figure 4.1: The HIL simulation setup developed

trol Unit (ECU), and the high-fidelity powertrain model is solved by a real-time target to

provide the accurate sampling which the controller requires. The communication channel

between the ECU and the plant (real-time target) is the Control Area Network (CAN)

bus. The following sections contain details of the hardware used in this setup.

4.1.1 MotoTron ECU

HIL simulation results are more reliable when the controller prototype is the same as

the controller used in the real plant. For this application (HEV powertrain controller), a

MotoTron ECU is used to serve as the powertrain controller. This ECU is from the ECM-

5554-112 family of controllers from Woodward that uses an 80MHz Motorola MPC5554

processor. The commercial version of this controller is used in automotive and marine

applications. The automotive-based design of this ECU makes it an ideal choice for HIL

simulations.

To program the controller code into the ECU, the code needs to be compiled by the

MotoHawk Green Hill compiler. The generated code can then be programmed into the ECU
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by MotoTune software. The controller used in this setup is a calibratable version which

provides controller tuning features in real-time using MotoTune. This feature is specifically

useful in tuning controller parameters without encountering the need to reprogram the

controller itself.

The easiest way to program the controller is to download the generated code into

the controller via CAN bus using MotoTune software. For this purpose, a USB-to-CAN

adapter is provided by MotoTune to facilitate the programming procedure. The controller

code itself can be easily complied using Woodward’s Green Hill compiler, which compiles

the required code directly from a Simulink model.

4.1.2 Real-Time Target

In HIL simulations, the way the plant model is solved is critical. If the controller cannot

access the measurements in the right time, or the simulation runs faster or slower than

real-time, the results will not be acceptable. Only when the plant model is solved in the

exact time steps, and controller obtains the readings on time, can we be sure that the

simulation is representing the real control loop.

To satisfy real-time requirements, and achieve enhanced accuracy of the simulations, it

is necessary to use a real-time computer to solve the plant model deterministically. To serve

this purpose, a PXI platform from National Instrument (NI) is used as the real-time target.

The processing unit of this computer is PXI-8110, which is powered by a 2.26GHx quad-

core CPU and has 2GB of RAM. Lastly, this PXI platform runs the LabVIEW Real-Time

operating system.

In real-time simulations, it is essential to run a real-time operating system on the com-

puter. In non-real-time operating systems (such as Microsoft Windows), there is no specific

deadline for computational processes, and tasks are prioritized based on different criteria

such as maintaining the hardware/software functionality or user preferences. On the other

hand, in real-time operating systems (such as the NI LabVIEW Real-Time operating sys-
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tem), the goal is to respond to an interrupt, or perform a task before a specified deadline.

Therefore, by making use of such real-time operating systems, the model can be solved

with greater consistency, and the communication delay can be minimized.

Our real-time target (NI PXI computer) runs LabVIEW Real-Time 2011 operating

system. To run a program on this platform, a LabVIEW program must be deployed.

LabVIEW is a graphical programming language that expedites the development of multi-

threaded applications and facilitates communication with external hardware. LabVIEW

programs are made in Virtual Instrument (VI) files. These VI programs are made in the

host computer which runs a windows version of NI LabVIEW. The VI programs are then

deployed into the real-time target via Ethernet. Once the program is successfully deployed,

the real-time target begins to run the program, and the user can see the outputs or send

commands using the host computer.

To use this platform for solving the powertrain high-fidelity model in the real-time,

the model has to be converted into a C-code and then into a Digital Link Library (DLL)

in order to be used in the NI LabVIEW environment. The MapleSim Connector toolbox

provides a seamless process for this purpose. The model developed in MapleSim can be

easily converted to such DLL files, which in turn, can be used in a simulation loop in

LabVIEW.

Major responsibilities of the real-time target are depicted in Figure 4.2. Each of the four

cores of the real-time target CPU runs a different application. The first core is responsible

for running the application for PXI-host communication. This application is solely used to

send and receive variables to and from the laptop host via Ethernet connection. The second

CPU core runs the CAN communication application. The third core runs the battery cycler

control application, which will be discussed in detail in the following chapter. Finally, the

last core is responsible for solving the high-fidelity vehicle model.
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Figure 4.2: Schematic of the HIL setup
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4.1.3 CAN bus

The Control Area Network (CAN) is a standard message-based protocol, which was initially

developed for in-vehicle communications; however, because of its robustness and ease of

operation, it is often used in automation applications too [49].

On a CAN bus, each of the nodes are directly connected to the bus, and there is no

central control unit to regulate the communications. Instead, CAN bus is a serial message-

based protocol, where each node can send and receive messages when the bus is free. When

two nodes start to send messages simultaneously, the message with higher priority prevails,

and the lower-priority message waits until the bus is free. The priority of each message is

identified by an Arbitration ID, where lower IDs have the higher priority. The arbitration

ID also serves as the name tag for each message. When a node transmits a message on the

CAN bus, the message is received by every node on the bus. Each node can then ignore

the message, or do a specific task based on the ID and the contents of the message.

The other part of a CAN message is the data frame. A CAN data frame is defined

byte-wise, i.e., the message consists of groups of bytes that contain an integer number.

Thus, to send a variable, it should be scaled to an integer number, based on its range and

required accuracy. When the variable is transmitted and received, it is scaled back to its

original format.

When a variable requires more than one data byte to be transmitted (when its range

exceeds [0,255]), it is divided into a number of bytes. Careful attention is required during

the processes of turning the variable into separate bytes and the ordering of bits in each

byte.

In a CAN message, the bits are sent one by one as a serial signal. When the whole

message is sent, it is interpreted as a number of bytes. However, the way the bits are

grouped into bytes shows inconsistency between different devices and software packages.

For example, the Woodward compiler takes the first eight bits of the message as the byte

7, but LabVIEW considers the same order of bits as byte 0 (see Figure 4.3). There are also
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Figure 4.3: Different byte allocation methods in CAN data frame

various ways to interpret the multi-byte numbers. This is referred to as the endianness. In

little endian format (Intel), the least significant byte is first and has lower index, whereas

in big endian format (Motorola), the least significant byte is sent last and has the highest

index. The difference in endianness is illustrated in Figure 4.4. In our setup, the little

endian mode is used to interpret data bytes.

The optimal powertrain controller discussed in chapter 2 requires two readings from the

system: the state of charge and the electric power demand (Pe). The two measurements

are calculated by the real-time target by solving the high-fidelity model. The real-time

target then sends these two pieces of information, along with the estimated P̄ , in a single

CAN message to the ECU. The controller processes the information and calculates the

optimal generator power. The optimal generator power and corresponding optimal battery

power are sent back to the real-time target in another CAN message.

Table 4.1 shows the variables, and the position of the variable in the CAN messages

for ECU-PXI communication.
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Byte 0 Byte 1 Byte 2 Byte 3
00000000 00000001 00000010 00000100message: 
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number: 00000100 00000010 00000001 00000000

Byte 0 Byte 1 Byte 2 Byte 3
00000100000000100000000100000000
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16
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+ + + +

= 67240192 = 66052

Little Endian Big Endian

= =

Figure 4.4: An example for different endianness definitions

Table 4.1: CAN message definition for the HIL simulations

CAN message MotoHawk LabVIEW

message

name

arbitration

ID

message

length

variable

name

start

bit

bit

length

start

bit

bit

length

ECU to PXI 2 4 bytes
Pgen ref 56 16 0 16

Pbat 40 16 16 16

PXI to ECU 1 7 bytes

Pe 56 24 0 24

P bar 32 16 24 16

SOC 16 16 40 16
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In the base CAN frame format (CAN 2.0 A protocol), the identifier portion of the

message (arbitration ID) contains 11 bits following the start bit. The main data frame can

contain up to 8 bytes (64 bits). Combined with all other regulatory bits, a CAN message

is comprised of up to 108 bits. Depending on the bit-rate of the CAN channel, a limited

number of messages can be sent on a CAN bus. In this HIL setup, the CAN channels work

with a bit rate of 500 kbps (kilo-bits per second); therefore, the maximum capacity of each

CAN channel is roughly 4600 messages per second. The communication program on the

real-time target runs at every 1ms and sends a message (PXI to ECU) in each run of the

loop. The controller program also runs every 5ms and sends one message (ECU to PXI).

Thus, 1200 messages are sent each second, and this load occupies 26% of the CAN channel

capacity.

4.2 Numerical Convergence Study

In every numerical simulation, the process of convergence study is of great importance. It

is essential that the simulation results be free of numerical errors such as integral error and

discretization of simulation time. On the other hand, reducing time steps and integration

tolerances increases the computational time, and it is possible that the simulation could

fall behind real-time requirements.

To solve the high-fidelity model in LabVIEW, the explicit third order Runge-Kutta

integrator was used. The result of such an explicit method converges to the correct solution

by reducing the time step. When the solution changes negligibly with reducing the time

step, it can, therefore, be inferred that the solution has converged. Figure 4.5 shows the

result of the convergence study conducted for solving the high-fidelity model in LabVIEW.

It can be seen that the time step of 2ms gives satisfactory results, hence is used in this

simulation.

55



6.3 6.35 6.4 6.45 6.5 6.55 6.6
7.78

7.8

7.82

7.84

7.86

7.88

time (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

10ms 5ms 2ms 500us

Figure 4.5: The simulation results for different step sizes

In real-time applications, it is also important to choose a simulation step size greater

than the time required to solve one iteration. This ensures that all of the computations

required for one time step will be completed before the next iteration begins. Figure 4.6

shows the number of iterations that finish late in relation to different time step sizes. For

example, at 200µs, 91 % of iterations finish late (the model takes more than 200µs to be

solved). In comparison, only 2% of iterations finish late if a step size of 210µs is chosen.

It can also be seen that 250µs is the real-time requirement for this model as each of the

iterations finish in time. Lastly, one can infer that the time required to solve one step of the

model is roughly between 200µs and 210µs – where the number of finished-late iterations

jumps.
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4.3 HIL Simulation Results

With the setup described in the previous sections, a full HIL simulation can be done.

As shown in Figure 4.7, despite the simplifications brought forth in controller design and

neglect of communication delays, the controller can successfully predict the behavior of the

HEV powertrain and can maintain optimal behavior.

Figure 4.8 shows the tracking performance of the engine-generator set. Thus, as can be

seen in Figure 4.9, the power that the battery has to deliver or absorb follows the optimal

trajectory that the optimal controller had considered.

As the battery – the most critical component of the powertrain – behaves as predicted,

one can examine such results and conclude that the optimal controller is indeed able to

predict the optimal behavior of the system. Since the lower level controllers can cause the
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system to follow the optimal controller set-points, the behavior of the system with the use

of the optimal controller is, therefore, optimal.

4.4 Chapter Summary

This chapter discussed the details of the hardware-in-the-loop simulation of a series HEV

powertrain with the optimal control. To examine the hardware issues in the control loop,

the designed controller was programmed into a MotoTron ECU, and the high-fidelity model

was solved by a real-time PXI target.

The simulations showed that the designed controller was able to provide satisfactory

prediction of the system, and the control loop delays and communication issues were neg-

ligible.
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Chapter 5

Component-in-the-Loop (CIL)

Simulation

In a hybrid electric powertrain, the battery is the component that has the most influence

on the system behavior – especially in the design of optimal controllers. Therefore, to

evaluate the designed powertrain controllers, it is very useful to include a physical battery

in the control loop. This component-in-the-loop (CIL) simulation greatly enhances the

accuracy of the simulations and provides a better benchmark for the controllers.

In CIL simulations, the physical components replace their mathematical models and

are driven according to the simulation requirements. In this CIL setup, the battery will

replace its mathematical model, and the simulated charge/discharge power is used to drive

the battery. The replacement of a mathematical model with a physical component presents

a challenge to include a component in an otherwise mathematical simulation. To achieve

this functionality, a real-time battery cycler is used. The real-time target solves the models

of other components in the powertrain and indicates a power that the battery should be

charged or discharged with – just as it would be in the actual vehicle. This power is

then used as the set-point for the real-time battery cycler. The battery cycler drives the

battery with the required power, and the battery management system (BMS) monitors the
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changes in the battery. These measurements are then sent back to the simulation and/or

the controller. Figure 5.1 shows the schematic for the HIL simulation (without a physical

battery) and the CIL simulation (with the physical battery in the loop) for a series HEV.

In this chapter, the CIL setup that was constructed for the evaluation of HEV power-

train controllers will be discussed.

5.1 Hardware Description

The CIL setup is built upon the existing hardware-in-the-loop setup, through the addition

of a real-time battery cycler, as displayed in Figure 5.2. The battery cycler is a device

which receives the required battery charge/discharge power and charges/discharges the

battery accordingly.

The battery cycler consists of two major components: a power supply and an electric

load, which are responsible for charging and discharging the battery, respectively. The

schematic of the battery cycler is displayed in Figure 5.3.

This CIL setup employs a scaled-down battery test bench – the battery under testing

is not the same size as the battery pack in vehicles. Although in such a scaled simulation

there is a small amount of error due to component scaling, the greater flexibility of the

setup makes it ideal for development purposes. On the other hand, when the full-size

battery pack is used, the results are only accurate for that particular battery pack, and

simulating other battery sizes is not possible without the same scaling error. Therefore,

working with a full-size battery test bench is not only more costly, but it also lacks the

flexibility required for research and development purposes. In the following sections, the

details of the real-time battery cycler are described.
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Table 5.1: Comparison of three types of batteries [50]

Characteristics Lead-Acid NiMH Li-ion

Specific energy (Wh/kg) 35 70 180

Energy density (Wh/l) 70 140 180

Energy/consumer-price (Wh/US$) 7 2.75 2.8

Electrical Efficiency 90% 66% 85%

Self-discharge rate (%/month) 20 30 5

Durability (cycles) 800 1000 1200

5.1.1 Battery and Battery Management System (BMS)

There is a broad range of technologies for the sources of electrical energy in electric and

hybrid electric powertrains. Such sources include but are not limited to fuel cells, batteries,

ultra-capacitors, and solar cells. Among these energy sources, batteries are one of the most

important sources. The battery itself branches into different categories such as Nickel Metal

Hydride (NiMH), Lithium ion (Li-ion), and Lead-acid batteries [50].

In the automotive industry, especially in electric and hybrid electric vehicles, NiMH

and Li-ion batteries are the most widely used technologies. NiMH batteries are known

to be a stable and safe solution; however, compared to Li-ion batteries, they have much

lower specific energy and electrical efficiency, and have higher self-discharge rate. In return

for better performance, Li-ion batteries require more complicated battery management

systems due to their unstable nature. A comparison of the battery technologies in given

in Table 5.1, taken from [50].

Li-ion batteries are growing in market share, especially in plug-in HEVs. They are

expected to replace NiMH batteries due to their superior performance, and they seem to

be the main technology of the electrical storage system in the electric and hybrid electric

vehicle of the near future.

As a result of the nature of the batteries, it is highly recommended to use battery
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Figure 5.4: Comparison of different technologies for Li-ion battery [51]

management systems (BMS) to monitor and regulate the cells in a battery pack. A BMS

monitors the individual cell voltage, temperature, and current while also calculating the

battery state of charge and state of health and providing protection circuits to ensure that

the batteries are working safely. As the requirements of the battery packs change with

battery size and chemistry, no BMS can be used for all battery packs. Therefore, for the

CIL simulation, it is best to have a versatile battery/BMS module that allows us to test

for a variety of applications.

Figure 5.4 shows a comparison of different common cathode chemistry in Li-ion bat-

teries. It can be seen that Nickel Cobalt Oxide (Li(Ni,Co)O2 or briefly NCA) cells show

longer calendar life and higher energy and power density; however, they are relatively un-

stable. On the other hand, LiFePO4 cells are inherently more stable, but are more costly

and short on storage capacity.

For our powertrain CIL setup, the right choice of battery size and chemistry is impor-

tant. The battery chemistry affects the current rating of the cells (the maximum amount
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of current a cell can be driven with), as well as the charge/discharge dynamics of the cells;

the effect of the chemistry on the latter is, however, negligible. Battery size, on the other

hand, then identifies the size of the battery cycler; larger battery cells require larger and

more expensive battery cyclers.

Battery size and chemistry affects the current rating. However, comparison of current

ratings for different batteries may be misleading as the larger cells will have higher current

ratings. It may even be possible to place a number of cells in parallel to get the same

current rating. Therefore, a per-unit scale is usually used to compare battery current

ratings. This per-unit scale (denoted by C) is the ratio of the battery current per its

capacity. For example, a current of 50A passing through a 10Ahr cell is 50A
10Ahr

= 5C. In

this way, the per-unit current of a battery pack, which consists of a number of cells in series

or parallel, is the same as the per-unit current of each individual cell. This idea is further

illustrated in Figure 5.5. It can be seen that the per-unit current of any configuration of

cells is the same as the per-unit current of the individual cells.

During the simulations described in chapter 3 and 4, the battery current momentarily

reached 100A. Considering the battery size (6.5 Ahr), the per-unit current is roughly 15C.

To simulate such a full-size battery pack with the CIL setup, the test battery cells should

be able to provide the same charge/discharge rate.

For this CIL setup, NCA Li-ion cells from GAIA are used (see Appendix D). These

cells are available in large capacities (7.5 Ahr) and show superior charge and discharge

rates – up to 16C pulse charge and up to 40C pulse discharge – which meets the power

rating requirements.

The BMS to work with these cells are provided by i+ME ACTIA [52], a German

manufacturer. This BMS consists of two parts: a master board and a number of slave

boards. The slave boards are solely responsible for measuring the individual cell voltage

and temperature in a multi-cell module. Each slave board monitors up to 10 cells and

remains in sleep mode until it receives a request from the master board. The slave board

starts the measurements, and when it is finished, it passes the information to the master

66



I/3

I

I/3

capacity: 3Q
current: I
per-unit current: I/3Q

capacity: Q
current: I/3
per-unit current: I/3Q

capacity: Q
current: I/3
per-unit current: I/3Q

Q

Figure 5.5: Per-unit current for different cells in a battery pack

board and goes to sleep mode again. For our CIL setup, only one slave board is used to

monitor the three cells.

The slave board is connected to the master board via an RS-485 interface. The master

board is responsible for collecting measurements form the slave board and current sensor,

monitoring the state of charge calculation, assessing battery protection (over voltage, under

voltage, over current, etc.), and maintaining communications (via CAN bus and RS 232

interface).

Once the master board is turned on (either by the CAN wake-up frame or by activating

the power switch), it begins the wake-up procedure by performing an internal hardware

check, retrieving statistical data, conducting initial measurements, and (if there is no error)

activating the main relay. When the wake-up phase is completed, the master board sends

requests to slave boards for individual cell voltage and temperature and measures the

current from the current sensor every 40ms.
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The BMS calculates the state of charge using the following procedure. When the battery

current is low (less than 200mA), the master board acquires individual cell voltages and

estimates the state of charge based on a look-up table and average battery voltage. When

the current exceeds 200mA, the master board uses the estimated state of charge as the

initial condition, and uses the current sensor to measure the amount of charge that passes

through the battery.

The preferred method of communication with the BMS is via CAN bus. Initially the

BMS is in sleep mode and is awakened by a wake-up CAN message. Once the BMS

is active, it is possible to send the command to BMS using CAN messages. The BMS

interprets the message and sends back an answer. For example, to retrieve the state of

charge, the message with ID 0x100, containing number 3, should be sent to the BMS, and

it returns a message with ID 0x101, containing a 3-byte number that will show the state

of charge in 0.1% steps.

5.1.2 Power Supply

The power supply in this setup is responsible for charging the battery, according to the

charge requirements found from simulating the powertrain model. After the battery size

and type are selected for this setup, the power supply and electric load specifications have

to be identified accordingly. The selected batteries are 7.5Ahr in capacity and can be

charged with 30A continuously and up to 120A momentarily. Therefore, to fully use the

battery capabilities – which are also required for simulations – the power supply should be

able to deliver up to 120A.

Another important specification for power supplies is the response time – the time the

power supply requires to change from no-power to full-power. To identify the required

response time, the role of the power supply in the CIL setup must be considered. In the

powertrain CIL simulation setup, the battery is charged either during regenerative braking

or when the engine runs the generator. In the former case, the frequency range of battery

power is the same as that of the power demand, which is usually less than 1 Hz (the driver
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commands do not change faster than 1Hz). In the latter case, when the engine-generator

set charges the battery, the battery power variation is limited by the engine dynamics and

the engine set-points, which once again are related to the power demand.

For the power supply to track the required power trajectory, it should have a rise time

that is 10 times faster than the required trajectory. Considering the maximum of 10Hz for

power request variations, the power supply should have a rise time of less than 10ms. This

is a constraining factor as most power supplies have longer rise time.

One power supply that could meet both specifications (current rating and rise time)

is the Chroma 62024P-40-120 DC power supply. This power supply, which can deliver up

to 120A (Figure 5.6), is used in this setup. More details about this power supply can be

found in Appendix E.

The power supply can be controlled remotely via either a GPIB (General Purpose

Interface Bus) terminal, or an analog interface. The control of the power supply is further

discussed in section 5.2.

The power supply can work in two modes: constant voltage and constant current. In

constant voltage mode, the power supply maintains a constant voltage across the load,

69



regardless of the current. In constant current mode, the power supply tries to maintain

the output current at a constant level by changing the terminal voltage. In this mode,

when the connected load changes rapidly, the power supply output current takes some

time to recover from the disturbance. This time is referred to as the transient time and is

3ms for the selected power supply.

5.1.3 Electric Load

Similar to the power supply, the electric load is responsible for discharging the battery to

simulate the power drawn from the battery by the electric motor(s). For the electric load,

similar current rating and rise time specification is required. The battery cells are capable

of continuously delivering power at 150A (20C); therefore, it is best to have an electric

load capable of drawing the same current. The problem surrounding rise time is much less

important in electric loads, as they experience very fast transient time – typically less than

1ms.

For this CIL setup, an Ametek Sorensen SLH 1800-60-240 is chosen and meets the

required specifications (see Appendix F. The SLH load has a similar constant power curve

as the power supply and is able to draw up to 240A, limited by 1800W power. Therefore,

the load can draw up to 163A (21C) from the battery cells at 11V (total voltage of the

three battery cells). The operating curve for this SLH load is shown in Figure 5.7.

The electric load has four different modes of operation: constant current, constant

voltage, constant resistance, and constant power. In constant current, the load draws a

constant current regardless of the terminal voltage. In constant voltage mode, the load

adjusts the current to achieve constant voltage across its terminals.

The constant resistance mode adjusts the current based on the terminal voltage ac-

cording to Ohm’s Law:

I =
V

R
(5.1)

For this operation mode, the resistance, R, can be chosen from range 10−2Ω to 103Ω.
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 Figure 5.7: The operating curve for the Sorensen SLH 1800-60-240 electric load, [54]

Finally, in the constant power mode, the current is adjusted in such a way to maintain

the power constant.

The load can also be controlled via GPIB and analog interface. Control of the electric

load will be discussed in section 5.2

5.1.4 Safety Features

The battery cycler is a high-current device, which requires careful safety considerations.

The battery itself is a potentially dangerous device, and if operated inappropriately, it

may overheat, leak, or even explode. The inclusion of safety features in the CIL setup is,

therefore, very important. Figure 5.8 shows important safety features of the battery CIL

setup.

Due to very high current levels, the cables (the heavy lines in Figure 5.8) have to be

chosen to sustain the largest current that the system can produce. As the highest current
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Figure 5.8: Schematic of the electrical circuits

rating belongs to the electric load (240A), 0-AGW (American Wire Gage 0) cables are

chosen to connect the battery to the power supply and the electric load.

The four high-current diodes are used to direct power only in the right direction, and

prevent back-flow. The two high-current relays (relay 1 and 2) are used to break the circuit

whenever a problem occurs. The relays are activated by a separate 12V power supply and

are only closed when both the emergency stop switch (a normally closed switch) and the

relay connected to the BMS (relay 3) are closed. In a case where there is an error detected

by the BMS (such as over/under voltage, over temperature, etc.), the BMS opens the relay,

which in turn, breaks the 12V circuit and, therefore, the whole circuit.
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5.2 Hardware Control

The real-time target used for solving the high-fidelity model in the previous chapter is a

National Instruments PXI platform. National Instruments is well-known for its products

for hardware control and automation. The PXI platform provides a compact solution for

controlling different pieces of hardware. On our PXI computer, as was mentioned in the

previous chapter, there is a two channel CAN bus card as well as an M-series multifunction

DAQ card (NI PXI 6289). The main platform itself (NI PXI 1031) has a GPIB, an RS-232,

an Ethernet, and four USB terminals. To control the battery cycler, the analog interface

and the multifunction DAQ card is used. The NI PXI 6289 DAQ has four analog outputs

and 16 analog inputs, as well as 32 digital I/O ports.

The following sections provide the details of controlling the BMS and the battery cycler.

5.2.1 Control of the BMS

As was mentioned earlier, the BMS can be controlled by sending CAN messages. The BMS

responds to each CAN message by sending an answer containing the required information.

Before using the BMS, it has to be activated. This can be done by sending it a wake-up

frame to the BMS. Once the BMS receives a wake-up message, it waits for a maximum of

200ms for another wake-up message. If the BMS does not receive such message, it goes

into sleep mode again. As the CAN bus may be occupied with other messages, it may be

required to send the wake-up frame a number of times to successfully activate the BMS.

Once the BMS is awakened, it sends back a confirmation CAN message.

When the BMS is active, inquiry CAN messages can be sent to the BMS and it will

return another CAN message containing the inquired information. The details of CAN

message formats and message descriptions are provided in appendix C. Finally, to turn off

the BMS, a shut-down message has to be sent.
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5.2.2 Control of the Battery Cycler

The goal of using a battery in the simulation loop is to achieve higher accuracy. Thus, the

battery cycler is expected to drive the battery cells according to the reference power with

negligible error.

The two actuators – the power supply and the electric load – can be controlled by a

remote computer using their analog interfaces. For this purpose, the multifunction DAQ

card on the PXI platform is used to write and read analog voltages on the devices’ analog

interface.

Controlling the Power Supply

The power supply output voltage and current can be controlled by a 0-10V voltage applied

to the analog interface terminals. To charge the battery with a specified power, it is easier

to adjust the current in constant current mode. Therefore, a PI controller is used to control

the power supply current to achieve power tracking. The schematic of the control loop for

the power supply is shown in Figure 5.9.

In Figure 5.9, the two measurements of the system are the power supply output current

and voltage. Once the output voltage and current are measured, the battery power can be

found as the product of the voltage and current. This power is used as the feedback to find

the error, which is the input to the PI controller. Finally, the output of the PI controller

is a current command to be sent to the power supply.

The measurements for the power supply voltage and current are done through the power

supply analog interface and are in forms of analog voltages from 0 to 10V. These analog

voltage readings should be scaled to provide meaningful parameters. The 0-10V analog

voltages maps into zero to full-scale value of the measured parameter, i.e.:

Voutput
Vfull scale

=
Vanalog,V

10V
⇒ Voutput = Vanalog,V ×

40V

10V
(5.2)
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Figure 5.9: The control loop for power supply

Ioutput
Ifull scale

=
Vanalog,I

10V
⇒ Ioutput = Vanalog,I ×

120A

10V
(5.3)

In these relations, Vanalog is the voltage measured at the analog interface (0-10V), and

subscripts V and I represent the measurements for the power supply voltage and current,

respectively. Voutput and Ioutput are the voltage and current of the battery, and Vfull scale

and Ifull scale are the maximum voltage and current ratings of the power supply, which are

40V and 120A, respectively.

In Figure 5.9, the gains G1 and G2 are the gains in (5.2) and (5.3), and are used to

scale the analog readings to output voltage and current. G3 is used to scale the PI output

(current) to an analog 0-10V voltage (G3 = G2−1).

The readings from the power supply are highly affected by environmental noise and

should be filtered before use. For this application, first order discrete filters are used.

y[n] = ay[n− 1] + (1− a)x[n] (5.4)

In (5.4), x[n] is the reading from the analog interface, y[n] is the filtered signal, and
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Figure 5.10: Tracking performance of the power supply

y[n− 1] is the signal at the previous time step. In this filter, a is the filter coefficient and

is chosen to be 0.05 in this setup for both voltage and current measurements.

Once the voltage to be applied to the analog terminal is identified, the LabVIEW

DAQmx package can be used to assign the voltage to one of the analog outputs of the

multifunction DAQ card.

The tracking performance of the power supply in following positive battery power tra-

jectories (i.e. charging) is shown in Figure 5.10. It can be seen that the power supply can

track the required power trajectory up to 5Hz, but it cannot keep up with more rapidly

changing set-points. This problem is addressed later in this section.

Controlling the Electric Load

Similar to the power supply, the electric load can be controlled and monitored through the

analog interface. The same principles apply here too. The analog voltage of 0-10V maps

directly into a 0-full scale parameter.

The electric load, unlike the power supply, can be used in constant power mode. This
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mode is especially useful for our application of controlling the power drawn from the

battery. All that needs to be done in this case is to scale the desired power (0-1800W)

to an analog voltage (0-10V) and apply this analog voltage to the electric load using the

DAQmx package and the multifunction DAQ card.

The electric load, however, needs calibration, as a simple scaling cannot provide satis-

factory results. To achieve better performance, the analog voltage has to be off-set by a

small amount, as seen in (5.5).

Vanalog = desired power× 10V

Pfull scale
+ offset (5.5)

For this control application, 1822W and 0.0022V (found by trial and error) are chosen

for the full-scale power, Pfull scale and off-set voltage, respectively, in order to achieve lower

tracking error. The schematic of the electric load controller is shown in Figure 5.11.

Figure 5.12 shows the tracking performance of the electric load in driving the battery

power with negative (i.e. discharging) power.

Coupled Control strategy

As can be seen in Figure 5.12, the electric load has a very fast programming time; thus,

the battery current can follow the set-point trajectory of up to 20Hz with little error. The
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Figure 5.12: Tracking performance of the electric load

power supply on the other hand, cannot keep up with fast changing power trajectories.

Fortunately, the power supply has a relatively fast rise time and is slow only in fall time.

The difference in the rise and fall times of the power supply is visible in Figure 5.13.

When the power set-point falls faster than power supply capabilities, there is excessive

current delivered to the battery (the shaded area in Figure 5.13). To compensate for this

slow power supply behavior, the electric load can be used to effectively draw the excessive

current that is being delivered by the power supply. Thus, the extra power being delivered

(the difference between the actual battery power and the set-point) is added to the electric

load command according to (5.6).

Pelectricload = Pset point + Pextra (5.6)

With this coupled control strategy, the tracking performance of the whole battery cycler

is improved. This improvement is shown in Figure 5.14. As it can be seen, the battery

cycler can follow the fall of the set-point with less error using the coupled controllers, but

still there is an error in rising part due to power supply dynamics.
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Figure 5.14: Improvement in tracking performance of the battery cycler at 20Hz
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5.3 Battery Identification

The CIL simulation setup is used as a part of a hybrid electric powertrain simulation to

evaluate the controller performance. As the controllers are designed based on specific sys-

tem parameters, it is important to consider the GAIA battery cells as the vehicle electrical

energy storage systems.

Therefore, to design a better controller, an accurate control-oriented model that is

tailored for the GAIA battery cells is essential. To identify the parameters that give the

best representation of the cells, a parameter identification study has to be done on this

battery.

In most identification procedures, the physical system is excited by an input, and the

outputs of the system are compared against the outputs of a mathematical model. Then

the parameters in the model are changed in such a way that the output of the model and

the physical system become as close as possible.

There are various methods with which the parameters can be identified. Some methods

can be used to identify the parameters on-line – such as recursive least-square methods.

These methods are especially useful in estimating time-varying parameters.

In off-line methods, the system is excited, and the outputs are stored as a series of

timed signals. The stored data is later compared with the output of the model. Controller-

relevant parameter estimation methods usually follow the same logic to identify the model

parameters, which are later used in controller development.

The input by which the physical system is excited is important. If the system is excited

with only one frequency, only the response of the system to that particular frequency appear

in the output; whereas, if the system is shaken with a larger range of frequencies, more

characteristics of the system can be extracted.

To identify the battery cells, the offline method is used. The batteries are excited with

a known power, and the battery state of charge is recorded as the output of the system.

The model for which the parameters should be identified is the simple model that was
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Figure 5.15: The excitation input and the resulting output of battery

previously used to design the optimal controller in chapter 2. The model is repeated in

(5.7).

˙SoC =
−Voc +

√
V 2
oc − 4RPb

2RQ
(5.7)

The parameters to be identified are the open circuit voltage (Voc), the equivalent series

resistance (R), and the battery capacity (Q). As was mentioned earlier, the excitation

input is the battery power (Pb), and the output is the state of charge.

The excitation power input is chosen as a pseudo-random binary Sequence (PRBS),

which contains a broad range of frequencies. The PRBS power input to the battery cells

and the change in their state of charge are shown in Figure 5.15.

Finally, Matlab’s optimization toolbox is used to find the set of parameters that make

the model in (5.7) give close results to the real system. Among the optimization algorithms

in Matlab, the Genetic Algorithm (GA) is one of the global optimization methods that

can solve constrained optimization problems, and it is used in this parameter identification
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Table 5.2: Parameters in the identification problem

parameter lower boundary identified value nominal value

R 1mΩ 21mΩ 19.5mΩ

Voc 10 V 10.699 V 10.80 V

Q 100 As 29729.2 As 27000 As

process. In this optimization problem, the objective function to be minimized is the sum

of the square of error in each time step:

error =
∑

(SoCmodel − SoCexperiment)2 (5.8)

To calculate the error, the state of charge data in Figure 5.15 is interpolated in each time

step, and the difference between the model output and the interpolated data is squared

and summed to form the error.

Since the parameters of the model in (5.7) have physical meaning, they cannot assume

any number. For example, the open circuit voltage has to be close to the terminal voltage of

the cells. Therefore, the lower limits presented in Table 5.2 are specified for the parameters

in the optimization problem. Table 5.2 also presents the solution of the GA algorithm,

with the initial population Voc = 10.6V , R = 0.01Ω, Q = 30000As, population size of 100,

and 100 generations.

To validate the identified model, the batteries are excited with a different input (a chirp

signal). The input power and the comparison of the state of charge between the identified

battery model and the experimental data are shown in Figure 5.16.
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Figure 5.16: Comparison of the state of charge trajectories between the identified model

and the physical battery

5.4 Component Scaling Using Buckingham’s Pi The-

orem

When a full-size system needs to be simulated with a smaller prototype, a meaningful

scaling has to be conducted to achieve acceptable results. Dimensional analysis, especially

in fluid and thermal systems, are widely used to relate the phenomena that are similar in

behavior but different in size.

Similarly, the developed CIL setup uses a scaled-down battery to simulate the full size

battery pack in HEVs. To accurately simulate the HEV battery with the cells in the CIL

setup, the batteries must be scaled properly.

In this setup, the scaling of the battery cells occurs at the inputs and outputs of the

battery cycler. When two systems follow the same principles and only differ in the value

of the parameters, Buckingham’s Pi Theorem can be used to map one system to the other.

The formal statement for the Pi Theorem is as follows [55]:
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If an equation in n arguments is dimensionally homogeneous with respect to m

fundamental units, it can be expressed as a relation between n−m independent

dimensionless arguments.

In the battery analysis, the following variables (or arguments) need be considered:

• SoC: battery state of charge

• P: battery power;

• V: battery voltage;

• I: battery current;

• Q: battery capacity;

• R: equivalence series resistance; and

• t: a characteristic time.

The battery state of charge itself is a dimensionless parameter, and we consider it as

the output of the system. Therefore, as long as other dimensionless groups of the systems

are the same, the state of charge of the two systems will also prove equivalent.

The battery power is the input to the battery cycler, and it is the parameter that must

be scaled properly before being used to drive the battery. The final goal of this dimensional

analysis is to identify such a scaling factor for the battery power.

The parameters mentioned above are made from four fundamental units: [M]: mass,

[L]: length, [T]: time, and [A]: current. Thus the parameters can be written as functions

of the four fundamental units, as in Table 5.3.

Since the dimensional bundle of [M ][L]2 appears together, it can be considered as

one fundamental unit; therefore, the Pi Theorem states that the system (battery) can be

presented by the 6− 3 = 3 dimensionless groups. There is no unique set of dimensionless
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Table 5.3: Important parameters in battery analysis and their dimensions

parameter dimension

P [M ][L]2[T ]−3

V [M ][L]2[T ]−3[A]−1

I [A]

t [T ]

Q [A][T ]

R [M ][L]2[T ]−3[A]−2

Table 5.4: Groups of dimensionless parameters in battery analysis

dimensionless group parameter relation

π1 voltage P
V I

π2 capacity It
Q

π2 resistance RI2

P

groups, and in this analysis, t, I, and P , are chosen as the primary parameters. For the

remaining parameters, dimensionless groups of Table 5.4 is formed.

In this experimental setup, a number of battery cells are to represent the full battery

pack. As both systems have the same chemistry, the dynamics of the two systems are

similar, and the characteristic time was chosen to be the discharge time, which is related

to the battery power and capacity. Since the battery pack and the cells in the CIL setup

should behave similarly, the following relations has to be satisfied:

π1BP = π1GAIA (5.9)

π2BP = π2GAIA (5.10)

π2BP = π2GAIA (5.11)

85



In the above relations, the battery pack and the cells are denoted by the subscripts BP

and GAIA, respectively. Substituting the Pi relations in Table 5.4 leads to:

[
P

V I

]
BP

=

[
P

V I

]
GAIA

⇒ PCIL =
VGAIA
VBP

IGAIA
IBP

PBP (5.12)[
It

Q

]
BP

=

[
It

Q

]
GAIA

⇒ IGAIA
IBP

=
QGAIA

QBP

tBP
tGAIA

(5.13)[
RI2

P

]
BP

=

[
RI2

P

]
GAIA

⇒ PGAIA
I2GAIA

=
PBP
I2BP

RGAIA

RBP

(5.14)

By combining (5.12) and (5.13), one relation for power and capacity can be found:

PGAIA =

[
VGAIA
VBP

QGAIA

QBP

tBP
tGAIA

]
PBP (5.15)

As the simulations have to be in real-time, the characteristic times of both systems are

equal, and the scaling factor is reduced to:

PGAIA
PBP

=
VGAIA
VBP

QGAIA

QBP

(5.16)

Therefore, the battery power has to be scaled according to (5.16) before it is sent to

the battery cycler to drive the battery cells.

It is important to notice that it may not be possible to map one system to the other

by just a simple scaling. In this case, once the power is scaled according to (5.16), the last

Pi relation, (5.14), may or may not be satisfied. This is because the internal resistance of

the battery is an independent parameter and may not be scalable. To better understand

this situation, assume two battery cells with the same capacity and voltage, but different

internal resistances. The difference may be due to build effects, battery wear, etc. As all of

the parameters but the resistance are the same, the first two Pi groups, (5.12) and (5.13),
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Table 5.5: Nominal battery parameters used for scaling

parameter RX400-h battery pack GAIA cells

voltage(V) 288.0 10.8

capacity (Ahr) 6.5 7.5

are essentially the same for the two batteries, but nothing can be done to make (5.14)

equal.

This apparent inconsistency with battery Pi groups can be solved by involving more

parameters, such as an electro-chemical parameter; however, this type of analysis is out of

the scope of this thesis, and the sole power scaling meets the requirements of this work.

The GAIA Li-ion cells in the CIL setup are used to simulate HEV battery packs. The

nominal values of the GAIA battery parameters and the nominal values of a full size

battery pack (Lexus RX400-h) are presented in Table 5.5. With these parameters, the

scaling factor can be calculated according to (5.17).

PGAIA
PBP

=
VGAIA
VBP

QGAIA

QBP

=
10.8V

288.0V
× 7.5Ahr

6.5Ahr
= 43.27× 10−3 (5.17)

Identified Battery Model as Control-Oriented Model

The optimal powertrain controller was previously applied to the high fidelity model that

included a chemistry-based battery model; therefore, the controller had been designed for

that battery. For the HIL simulations, the same high-fidelity model was used; therefore,

the controller was not changed. However, for the CIL simulations, the controller is going

to be applied to a model that contains the physical batteries, which is different from the

battery model that was previously used. Thus, the controller has to be tailored for the

GAIA battery cells, instead of the chemistry-based model.

The previously identified battery parameters can be used in conjunction with the scaling
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method to find a simple model to be used as the control-oriented battery model.

The target battery is a battery the same size as the Lexus RX400-h battery pack with

the nominal values specified in Table 5.5. The identified capacity and voltage of the battery

cells should, therefore, be scaled according to (5.18) and (5.19), respectively, to be used in

the control-oriented model.

QGAIA

QBP

=
QID

QCOM

⇒ QCOM = QID ×
QBP

QGAIA

= 8.26Ahr × 6.5Ahr

7.5Ahr
= 7.16Ahr (5.18)

VGAIA
VBP

=
VID
VCOM

⇒ VCOM = VID ×
VBP
VGAIA

= 10.699V × 288V

10.8V
= 285.3V (5.19)

In these relations, the nominal GAIA cell parameters are denoted by the subscript GAIA,

nominal full-size battery pack parameters by the subscript BP , identified GAIA parameters

by the subscript ID, and control-oriented model parameters by the subscript COM .

To properly scale the resistance, the new dimensionless parameter in (5.20) can be used

to relate the identified parameters to the scaled-up control-oriented model.

π4 =
RQ

V t
(5.20)

Again, as the simulations should have the same time scale, the characteristic times are

equal, and the resistor can be scaled according to (5.21).

RCOM =
VGAIA
VID

QID

QGAIA

RID =
285.3V

10.699V

8.26Ahr

7.16Ahr
× 21mΩ = 646.6mΩ (5.21)

With these up-scaled identified parameters in the control-oriented model, the series

HEV powertrain controller of chapter 2 is re-tuned. The CIL simulation results for this

controller concludes this chapter.
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Figure 5.17: Tracking performance of the battery cycler

5.5 CIL Simulation Results

Figure 5.17 shows the perfect tracking performance of the battery cycler in tracking the

battery power set-points, resulting from the simulation of the FTP75 drive cycle.

In the CIL simulation of the series HEV powertrain, all components except the battery

are the same as the HIL simulation. Therefore, the only different result would be the

state of charge trajectory of the battery cells, driven by the battery cycler. Figure 5.18

shows the state of charge trajectory of these cells, and what the controller had predicted

based on the new control-oriented model, for the first part of the FTP75 drive cycle. As

can be seen, the controller can successfully predict the system’s behavior, using the new

control-oriented model.

It should be noted that the Li-ion battery parameters, unlike NiMH batteries, change

with variations of state of charge. However, in this simulation, and in every HEV operation,

the variation of state of charge is small; thus the battery parameters remain very close to

the identified parameters. This assumption was also made in the controller design process,

and now can be justified by the CIL simulation results.
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Figure 5.18: CIL simulation results for the state of charge trajectory for the first part of

the FTP75 drive cycle

5.6 Chapter Summary

In this chapter, the description of the battery CIL simulation setup was presented. It was

mentioned that under proper scaling of the battery parameters, the CIL simulation setup

can be used to simulate full-size battery packs in HEVs.

The battery CIL setup was shown to be useful in identifying battery parameters, which

can later be used in control-oriented models, and the simulation results showed that such

a method can result in a successful controller development.
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Chapter 6

Driver-in-the-Loop (DIL) Simulation

The driver is the last part of the control loop in an HEV simulation that has to be con-

sidered. In fact, the driver is the most critical part of the simulations that needs to be

realistically involved in the control loop – as the erratic behavior of the driver is the most

unpredictable phenomenon in an HEV powertrain. A successful optimal controller is not

the one that gives the lowest fuel consumption for a specific drive cycle, but it is the one

that can handle the uncertainty of the driver’s behavior while giving near-optimal fuel

consumption. In this chapter, the development of a Driver-in-the-Loop (DIL) simulation

setup will be discussed. The DIL setup provides a way to gather the inputs from a human

driver in a fairly realistic environment using a set of steering wheel/shifter/pedals.

6.1 Hardware Description

The DIL setup is constructed upon the existing setup by addition of a set of gaming

devices, including a steering wheel, a gear shifter, and a set of pedals. The completed

HEV controller evaluation setup that includes the DIL test bench is shown in Figure 6.1.

The gaming device is connected to the host computer (the laptop) by USB connection.

To use this device in LabVIEW environments, a driver for receiving and interpreting the
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Driver interface 

Figure 6.1: The driver interface included in the setup

serial data coming from the gaming device was developed by Dr. Thomas Uchida. The

laptop that runs the Windows version of LabVIEW obtains the inputs from the gaming

device, processes them as the driver commands, and sends them to the real-time target as

the input of the vehicle dynamics block in the high-fidelity model.

The two inputs from the gas and brake pedals are interpreted as the electric motor cur-

rent by multiplying the position value by a gain. In this case, a positive current command

is produced by pushing the gas pedal, and a negative current is produced by pushing the

brake pedal. The steering wheel of the gaming device is used to steer the front wheels in

the vehicle dynamics model. The steering system in the vehicle model is a simple rotation

of the wheels about the vertical axis, and both wheels are steered by the same amount.
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Table 6.1: Effect of lane-change maneuvers on the fuel consumption

simulation fuel consumption (grams) final SoC

fixed steering 12.02 0.6001

lane change 12.21 0.5998

The pedals and steering wheel gains are tuned to provide a close-to-reality response to the

driver.

6.2 DIL Simulation Results

The DIL simulations are used to identify the effects of the driver’s behavior on the per-

formance of the designed controllers. In the first test, two simulations were run: once

with the steering wheel fixed and once with random lane-change maneuvers, while the

speed profiles followed the FTP75 drive cycle (reference) exactly. The fuel consumption

for the two tests are presented in Table 6.1. It can be seen that the fuel consumption is

increased by 1.6% when there are lateral maneuvers. The results are acceptable, since the

lane change maneuvers require extra energy that has to come from the engine. However,

despite the increase in power request and fuel consumption, the controller can still keep

the final state of charge at the reference value. Since the optimal controller mechanism is

independent of the power demand and as the system remains charge-sustaining, it can be

inferred that the controller gives the optimal solution even when there are unpredictable

lateral maneuvers.

In the previous test, the speed profiles were the same, and the vehicle had followed the

drive cycle precisely. However, a more challenging test for the controller would be random

deviations from the reference drive cycle. To study the effect of the driving pattern, three

simulations were done. In the first simulation, a PID controller was used as the driver to

follow the reference drive cycle (FTP75). In the other two rounds, a human driver was in
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Figure 6.2: Velocity profile and state of charge trajectory for different driving patterns

charge of driving the vehicle by sending power request signals to the simulation. In the first

driver-in-the-loop simulation, the driver goal was to follow the reference drive cycle with

small deviations. In the second DIL simulation, the driver employed a more aggressive

driving pattern with faster acceleration and deceleration rates. In the latter case, even

some parts of the drive cycle were altered. The simulation results for these three driving

patterns are shown in Figure 6.2. Moreover, the fuel consumption for the three simulations

is presented in Table 6.2.

Simulation results show that the driving pattern has much greater effect on the fuel

consumption and the performance of the controller, than the lateral maneuvers. In driving

the first pattern, the driver has tried to follow the drive cycle with little error, and the

94



results (state of charge and fuel consumption) are very similar to the reference. In this

case, the increase in fuel consumption is mostly due to the bigger fluctuations in the

electric power demand, which causes less use of the battery and more use of the engine,

thus increasing the final state of charge and fuel consumption. From this simulation,

it is evident that the controller can handle small variations in speed profile fairly well.

However, in the case of the aggressive driving pattern, the controller fails to keep the final

state of charge at the reference level, and due to higher acceleration, the fuel consumption

is increased. This system behavior can be explained as follows. The controller is expecting

gentle acceleration and deceleration rates; therefore, it limits the battery power, and most

of the required energy for the fast accelerations comes from the engine, which increases

the fuel consumption. Moreover, the estimated regenerative braking energy is less than

what is really available. This makes the battery become charged more than expected,

which increases the state of charge. The increased state of charge roughly means that the

engine has put extra charge in the battery. If the controller had predicted the regenerative

braking energy correctly, the battery could be used more, and the fuel consumption would

be reduced.

6.3 Chapter Summary

In this chapter, the development of a driver-in-the-loop simulation setup was discussed.

The DIL setup was used to evaluate the performance of the designed optimal controller for a

Table 6.2: Fuel consumption for three different driving pattern

pattern fuel consumption (grams) final state of charge

reference 11.31 0.596

pattern 1 12.83 0.606

pattern 2 21.43 0.625
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series HEV, and the results revealed that the designed controller can handle small variations

in the driving pattern (such as lane changing maneuvers and small speed variation) very

well. However, it failed to keep the system charge sustaining (hence optimal) in the case

of noticeable deviation from the reference drive cycle for which the controller had been

tuned. Therefore, the controller has to be modified to enable it to consider such variations

in advance, for example by using GPS and onboard radar systems.
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Chapter 7

Conclusions

7.1 Summary

In this work, the problem of optimal control of hybrid electric vehicles was explored. In

the first part of this research, a real-time, near-optimal controller for a series HEV was

developed. This controller was proven to be optimal under certain conditions, which were

later shown to be valid assumptions in this problem. Aside from this development, based

on the drive cycle ahead of the vehicle, a method was proposed that could be used to tune

the controller.

The remainder of this thesis was concerned with the testing of the designed controller.

First, the controller performance was evaluated by the use of a high-fidelity model in a

model-in-the-loop simulation. Using this simulation, the controller and the estimation

method were shown to be successful in providing close-to-optimal behavior. Once the

controller strategy had successfully passed the MIL simulation, it was coded into a real

electronic control unit for HIL simulations. In the HIL simulation, hidden aspects of the

control loop, such as the limited computational resources in the controller and communi-

cation delays, could be revealed. The results revealed that the controller performance was

not affected significantly by such issues.
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A major portion of this work was related to the component-in-the-loop simulation. In

this simulation, the controller was applied to a system that included a physical battery

instead of its mathematical model. The CIL simulation setup consisted of a real-time bat-

tery cycler, which was in constant communication with the model solver. As the controller

had to be tailored for the battery cells, they were identified in the form of a simple model

and were scaled to the size of an HEV battery pack. The results showed that the updated

controller could successfully capture the system’s dynamics – as the controller prediction

and CIL simulation results were very close.

Finally, a human driver was included in the simulations by a driver-in-the-loop simu-

lation setup. It was shown that the controller was able to handle small variations in the

driving pattern, but it required more information to be able to provide optimal results for

significantly different patterns.

In the end, it is worth noting that although the presented test bench was used for

evaluating the designed controller, it can also be used for evaluating future controllers, as

the test platforms are designed to be flexible.

7.2 Future Work

This worked involved the designing and testing of a series HEV controller. Although the

results showed strong potential for the designed controller, there is still room for improve-

ment in both design and testing parts.

Controller design:

In the controller design, one of the crucial areas for future research is the combination

of the tuning method (presented in chapter 2) with a route estimation method that can

predict future driving conditions with acceptable accuracy. This can be done by using route
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information such as speed limits, road grade, and traffic information, as well as onboard

vehicle sensors such as Radar and GPS.

Another area of interest would be the integration of this controller with an adaptive

cruise controller to reduce the deviation from the reference speed profile – thereby improv-

ing the controller performance and fuel economy.

The optimal controller was designed to minimize the fuel consumption only – the emis-

sions (such as NOx, CO2, and HC) were not considered. Therefore, the emissions need to

be included in the controller design as well. This, in turn, requires the development of a

simple yet realistic model of the engine that can estimate emissions.

MIL simulations:

In software simulations, the high-fidelity model can be improved by including more accurate

models. One major improvement would be the modeling of the power electronics in the

electric drives. Likewise, the engine model can be further improved by using a more

complex model such as the two-zone engine model, in order to provide a better estimation

of fuel consumption.

CIL simulations:

Including more components (such as an internal combustion engine and electric machines)

will definitely enhance the simulation fidelity. Including an internal combustion engine

into the simulation loop can especially be beneficial, as the engine has a very complex

dynamics, and it is difficult to model.

DIL simulations:

The developed driver-in-the-loop simulation setup can be further expanded by adding a

traffic simulator with a graphical user interface. This addition will enhance the driver feel

and simulation validity.
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Appendix A

Parameters

Below is the list of parameters used in this work.
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Table A.1: Parameters used in the control-oriented model

Parameter Description Value

mv Vehicle mass 1600 kg

α Engine constant 4.16e-5 g/s/W

β Engine constant 0.007g

frr Tire rolling resistance 0.01

ρ Air density 1.15 kg/m3

A Vehicle frontal area 2.31m2

Cd Aerodynamic drag coefficient 0.32

ηm DC machine efficiency 0.96

g Gravitational acceleration 9.8 m/s2

Pgen,max Gen-set max power 50kW

SoCmax Maximum allowable SOC 0.7

SoCmin Minimum allowable SOC 0.5

SoCref Reference (and initial) SOC 0.6

initial model (designed for the high-fidelity model)

Pbmax Maximum discharging current 27kW

Pbmin Maximum charging current -40kW

R Battery resistance 399mΩ

Voc Battery voltage 212.6V

Q Battery capacity 23.18× 103 As

updated model (designed for the GAIA cells)

Pbmax Maximum discharging current 27kW

Pbmin Maximum charging current -20kW

R Battery resistance 646mΩ

Voc Battery voltage 285.3V

Q Battery capacity 25.78× 103 As
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Table A.2: Parameters in the series HEV high-fidelity model

Parameter Description Value

Chassis

mv Chassis mass 1380 kg

mu Unsprung mass 10 kg

mt Tire mass 28 kg

wf Front track 1.524 m

wr Rear track 1.519 m

l Wheelbase 2.7 m

rt Tire radius 0.32 m

Kstiff Tire stiffness 304000 N/m

Kdamp Tire damping 500 Ns/m

Clong Tire longitudinal force coefficient 115000 N

Clat Tire Lateral force coefficient 117000 N

Crr Tire rolling resistance 0.003

NiMH Battery

N Number of cells 168

Vn Nominal voltage 201.6 V

Qn Nominal capacity 6.8 Ah

DC permanent magnet machines

ωn Nominal motor speed 1420 rpm

Vn Nominal armature voltage 100 V

In Nominal armature current 100 A

Ra Armature resistance 0.05 Ω

La Armature inductance 1.5 mH

Jr Motor inertia 0.15 kgm2
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Table A.2 (continued): Parameters in the series HEV high-fidelity model

Parameter Description Value

Engine

Ncyl Number of cylinders 4

Jeng Engine Inertia 0.43 kgm2

S Stoke 0.1 m

B Bore 0.085 m

λa Air/fuel ratio 1.1
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Table A.3: Parameters used in the HIL/CIL/DIL simulations

Parameter Value

HIL simulation parameters

Generator PI controller coefficient (K) -2

Generator PI controller coefficient (I) 1e-3 min

Engine torque controller coefficient 6e4

Motor PI controller coefficient (K) 200

Motor PI controller coefficient (I) 5e-3 min

HIL simulation time step 2 ms

CIL simulation parameters

Power supply filter coefficient 0.05

Power supply PI controller coefficient (K) 0.3

Power supply PI controller coefficient (I) 1e-4 min

Power supply voltage measurement gain 4 V/V

Power supply current measurement gain 12 A/V

Load power command gain 182.2 W/V

Load power command offset 0.0022 V

Load current measurement gain 24 A/V

DIL simulation parameters

Gas pedal gain 0.5 A/step

Brake pedal gain -0.5 A/step

Steering wheel gain 3000 rad/angle
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Appendix B

Software and Hardware List

In this section, the list of all pieces of hardware and software used in this work is given.
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Table B.1: List of hardware in the HIL simulation setup

Hardware name manufacturer part number function

PXI chassis National Instru-

ment

NI-PXI 1031 Real-time computer plat-

form

PXI Embedded

controller

National Instru-

ment

NI-PXI 8110 Real-time processing unit

PXI CAN card National Instru-

ments

PXI 8461 Two-channel CAN card

Data acquisition

card

National Instru-

ments

PXI 6289 Multifunction digi-

tal/analog data acquisition

card

I/O connector National Instru-

ments

SCB-68 68-pin shielded connector

block for DAQ devices

ECU Woodward ECM5554-112 Powertrian controller ECU

SmartCraft

CAN hub

Mercury Marine 6-port CAN hub

USB to CAN ca-

ble

Woodward ASMINTR00600 Two channel CAN to USB

adapter

Boot key Woodward 1635-1800 ECM calibration tool

4-port USB hub B&B Electronics UISOHUB4 4-port USB topical isolation

ECU power sup-

ply

Pyramid PS-4KX 13.8V power supply for

ECU
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Table B.2: List of hardware in the CIL and DIL simulation setups

Hardware name manufacturer part number function

Power Supply Chroma Systems

Solution

62024p-40-120 Charging the battery

Electric load Ametek/Sorensen SLH 60-240-

1800

Discharging the battery

Battery cell GAIA/Lithuim

Technology

UHP 341440

NCA

Battery cells for CIL

BMS master i+ME ACTIA Master board

rev. A

Battery Management Sys-

tem, master board

BMS slave i+ME ACTIA Slave board rev.

A

Battery Management Sys-

tem, slave board

CAN isolator B&B Electronics CANOP CAN optical isolator

High-current

contactor

TE Connectivity LEV200A4NAF 500A relay in power lines

High-current

diode

Microsemi

Power Products

Group

CPT50060 250A diode in power lines

12V power sup-

ply

TDK-Lambda

Americas Inc

LS100-12 Power supply for safety con-

tactors

BMS Relay TE Connectivity 1-1721081-2 BMS safety relay

G25 gamin de-

vice

Logitech G25 Pedal/steering

wheel/shifter for driver

interface
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Table B.3: List of software packages used

Software package Version Purpose

MathWorks Matlab R2011a Controller design, MIL simulation

Maple Soft MapleSim 5 High-fidelity modeling

WoodWard MotoTune 8.13.7.87 ECU programming and calibration

WoodWard MotoHawk 2011a SP0.184 ECU code generation from Simulink

Kvasr CANKing 4.0.8.142 CAN bus monitoring

NI LabVIEW 2011 Hardware control, HIL/CIL simulation

Microsoft Visual C++ 6.0 Compiling custom code to DLL code

Microsoft Visual C++ 9.0 Compiling DLL code from MapleSim
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Appendix C

CAN Message Description

The following pages, borrowed from BMS user manual [52, p. 39-41], present the details of

the CAN messages used for BMS control.
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User Manual BCS for Master rev. A and Slave rev. C

Ref.: IR11946 B Nov 2008

3.6 USING THE CAN INTERFACE
For details on hard wiring the master board to an existing CAN network see chapter 2.2.2.

3.6.1 Little Endian
The little-endian system is used in all CAN Frames.
In a little-endian (LE) CAN frame system, the low-significant byte (LSB) of the data is placed in the
lowest CAN - byte.
Example: Can Frame Id: 0x101 Data byte 0:0x44 byte 1:0x33 byte 2:0x22 byte 3:0x11

BCS TX ID: 0x101; TxDATA
No. Name Length Data

Byte 0
Sub-Id

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

1 I-Bat 8 1 Current SOC

0x44 0x33 0x22 0x11

Current = 0x11223344

3.6.2 Baudrate
The CAN baudrate is set to 250 kbps (default value)

3.6.3 CAN Frames

3.6.3.1 CAN WAKEUP Frame
BCS RX ID: 0x010; RxWakeup

No. Length Byte 0
Sub-Id

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

1 Wake Up 1 Cmd

Cmd: 0x01: Wake Up BCS
0x02: Shut down the BCS (go to sleep mode)
0x03: Shut down the BCS (go to sleep mode) with Auto-Balance-System disabled !

This is valid until the next RTC-Wakeup occurs ( 10 minutes )
0x04: CAN WatchDog Reset Command, if feature is enabled
0x50: CAN Reboot command, if feature is enabled
0x51: CAN Force KV-ON command, if feature is enabled
0x52: CAN Force KV-OFF command, if feature is enabled

Note: for the CAN-WatchdDog command : there is no acknowledge answer

BCS TX ID: 0x011; TxWakeup
No. Name Length Data

Byte 0
Sub-Id

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

1 Wake up 1 Cmd

Cmd: 0x01: Wake Up BCS
0x02: Shut down the BCS (go to sleep mode)
0x03: Shut down the BCS (go to sleep mode) with Auto-Balance-System disabled !
0x50: CAN Reboot command received
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0x51: CAN Force KV-ON command received
0x52: CAN Force KV-OFF command received

3.6.3.2 CAN DATA Frame
Send to BCS:

BCS RX ID: 0x100; RxDATA
No. Length Byte 0

Sub-Id
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

1 I-Bat >=1 0x01
2 U-Bat >=1 0x02
3 SOC >=1 0x03
4 Temperature >=1 0x04
5 Temperature Master >=1 0x05
6 Warning-Error-status =1 or 3 0x06 0xAA55

(option)
7 Get Short Info >=1 0x07
8 Get power forecast

I & P - Charge
>=1 0x08

9 Get power forecast
I & P - Discharge

>=1 0x09

10 Get Short Info 2 >=1 0x0A

The Warning-error-status: should have ‘0xAA55’ (word!! – byte order: 0x55, 0xAA) to reset the Error Flag
otherwise only a read Warning-error-status will be performed..
Answers from BCS:

BCS TX ID: 0x101; TxDATA
No. Name Length Data

Byte 0
Sub-Id

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

1 I-Bat 8 0x01 Current SOC
2 U-Bat 8 0x02 Battery voltage SOC
3 SOC 8 0x03 SOC
4 Temperature 8 0x04 Average Min Max
5 Temperature Master 8 0x05 Temp Master
6 Warning-Error-status 8 0x06 Error-cause Actual-error Warning
7 Get Short Info 8 0x07 Ubat

16bit Word
0 ... 655,00 V
step = 10 mV

IBat
16bit Int

0 ...[-] 320,00A
step = 10 mA

T-Avg
8-Bit Int
0..[ -]128°
step = 1°C

SOC
8Bit Int
..100%
step=1
%

Delta
Ucell
8Bit

Max-Min
mV
..255

8 Get power forecast
I & P - Charge

8 0x08 Predictor I
Charge
WORD

0 … 655,35 A
Step 10 mA

Predictor P Charge
DWORD

0 … 2^32 -1 [W]
Step 1 W

9 Get power forecast
I & P - Discharge

8 0x09 Predictor I
Discharge
WORD

0 … 655,35 A
Step 10 mA

Predictor P Discharge
DWORD

0 … 2^32 -1 [W]
Step 1 W
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10 Get Short Info 2 8 0x0A Ubat
16bit Word
0 ... 6550,0 V
step = 100 mV

IBat
16bit Int

0 ...[-] 3200,0A
step = 100 mA

T-Avg
8-Bit Int
0..[ -]128°
step = 1°C

SOC
8Bit Int
..100%
step=1
%

Delta
Ucell
8Bit

Max-Min
mV
..255

Current: signed long: mA
Battery voltage: unsigned long: mV
SoC: 0.1 %
All Temperature: signed short: 0.1 °Celsius
Warn-Err: unsigned short:
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Appendix D

GAIA Battery Cell Datasheet
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UHP 341440 NCA  

7.5 Ah/ 27 Wh
Lithium Ion Cell

Physical and mechanical characteristics
Diameter 34 mm
Height 174 mm (144 mm without terminals)
Terminals Positive terminal   Al  M8 L: 10 mm

Negative terminal Cu M8 L: 10 mm
Weight approx. 320 g
Volume without terminals 0.13 l
Case material Stainless Steel

Chemical characteristics
Positve electrode Lithium nickel cobalt oxide
Negative electrode Graphite

Electrical characteristics*
Nominal voltage 3.6 V
Nominal capacity at 0.2 C 7.5 Ah
Minimum capacity 7.1 Ah
AC Impedance (1 kHz) ≤ 1.2 mOhm
DC Resistance (ESR) ≤ 6.5 mOhm
(2 s pulse discharge @ 20 C/ 50% SOC)

Specific energy at 0.2 C 84 Wh/kg
Energy density at 0.2 C 207 Wh/l
Specific power 2340 W/kg
(2 s pulse discharge @ 40 C/ 100% SOC)

Power density 5730 W/l
(2 s pulse discharge @ 40 C/ 100% SOC)

Operating conditions*
Recommended charge method Constant current - constant voltage
End of Charge I ≤ C/100
Maximum charge voltage 4.2 V
Recommended charge current up to 7.5 A (1 C)
Continuous charge current up to 30 A (4 C)
Maximum pulse charge current (15 s) 120 A (16 C)
(Max. SOC 80 %, average current < 30 A)

Recommended voltage limit for discharge 3 V
Lower voltage limit for discharge 2.7 V
Lower voltage limit for pulse discharge 2 V

Recommended discharge current up to 15 A (2 C)
Maximum discharge current up to 150 A (20 C)
Maximum pulse discharge current (2 s) up to 300 A (40 C)

Operating temperature - 30°C to + 60°C
Recommended charge temperature      0°C to + 40°C
Storage and transport temperature - 40°C to + 60°C

Cycle life at 20°C and 100% DOD > 1000 cycles to 80%  nominal capacity
(0.5C charge; 0.5 C discharge) > 2000 cycles to 60% nominal capacity
* Reference temperature 20°C

Doc UHP 341440 NCA - 2009-06

Data in this document are subject to change without notice and

are not binding.

GAIA Akkumulatorenwerke GmbH Lithium Technology Corporation
Montaniastr. 17 5115 Campus Drive
99734 Nordhausen, Germany Plymouth Meeting, PA 19462
www.gaia-akku.com www.lithiumtech.com
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Power Supply Datasheet
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Programmable
DC Power Supply

Chroma’s new 62000P Series of programmable 
DC power supp l ies o f fe r many un ique 
advantages for ATE integration and testing.  
These advantage include a constant power 
operating envelope, precision readback of 
output current and voltage, output trigger 
signals as well as the ability to create complex 
DC transients waveforms to test device 
behavior to spikes, drops, and other voltage 
deviations.Designed for automated testing 
DC-DC converters and similar products, the 
62000P sets a new standard for high accuracy 
programmable DC supplies.

The 62000P Series includes 8 different models 
ranging from 600W to 5000W, up to 100A 
and up to 600V. Due to their constant power 
operating envelope a single instrument can 
provide both high voltage/low current AND 
low voltage/high current thereby reducing the 
number of supplies needed in typical ATE 
applications. 

The 62000P Series also includes 16 bit 
readback capability for accurate voltage and 
current readings. This means systems no 
longer need complex shunt/multiplexers to 
make accurate readings of the UUT's input 
parameters. The instruments also include I/O 
ports providing 8 bit TTLs, DC-ON, fault output 
signal and remote inhibit as well as a output 
trigger signal for system timing measurements.

Another unique capability of the  62000P Series 
supplies is their ability to create complex DC 
transient waveforms. This capability allows 
devices to be tested to DC voltage dropouts, 
spikes and other voltage variations making 
them an ideal choice for airborne device 
testing, inverter testing and other devices which 
will experience voltage interrupts. Applications 
include DC/DC Converter & Inverter voltage 
drop test, engine start-up simulation, battery 
automated charging, electronic product life 
cycle test, and etc. 

PROGRAMMABLE DC POWER Supply

MODEL 62000P SERIES

PFC
RS-232C GPIB

MODEL 62000P SERIES

Key  Features:
■	Eight models :	 62006P-100-25
		  62006P-300-8
		  62012P-80-60
		  62012P-100-50
		  62012P-600-8
		  62024P-80-60
		  62024P-100-50
		  62050P-100-100
■	Wide range of voltage & current
	 combinations with constant power
■	Voltage range : 0 ~ 600V  
	 Current range : 0 ~ 100A 
	 Power range : 600W, 1200W, 2400W, 5000W
■	Digital encoder knobs, keypad 
	 and function keys
■	Power Factor Correction (0.95)
■	High-speed Programming
■	Precision V&I Measurements
■	Current sharing for parallel operation 
	 with Master/Slave Control
■	Auto Sequencing Programming: 10 		
	 Programs / 100 Sequences / 8 bit TTL
■	Voltage & Current Slew Rate Control
■	OVP, Current Limit, Thermal protection
■	Remote sense, 5V line loss compensation
■	APG (Analog Programmable Interface)
	 with Isolated Analog Interface Card 
■	Optional GPIB control with SCPI 
■	Standard RS-232 interface
■	 LabView and Labwindows
■	CE Certified
■	Standard USB interface 
	 (available for Model 62024P-80-60,
	 62024P-100-50,62050P-100-100)
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 WIDE OPERATING REGION WITH CONSTANT POWER

 MASTER/SLAVE PARALLEL & SERIAL CONTROL

 PROGRAMMING SEQUENCES APPLICATIONS

The 62000P Series supplies offer a wide operating region. 
For example, the output specification for model 62012P-80-60 
is 1200W/80V/60A, it al lows operating f lexibly in various 
combinations as shown in the figure at the right.  As shown 
conventional power supplies provide the same rated current at all 
output voltages, however, the 62000P provides greater current at 
lower output voltages.  This means both low voltage/high current 
and high voltage/low current UUTs can be tested using a single 
supply avoiding the for multiple supplies saving cost and space 
within typical  ATE systems.

When high power is required, i t is common to connect two or more power supplies in paral lel or series. The 62000P 
Series supplies have a smart Master / Slave control mode making series/parallel operation fast and simple. In this mode 
the master scales values and downloads data to slave units  so programming is simple and current sharing automatic.  

The 62000P Series supplies allow for 100 user programmable sequences with time settings ranging from 10ms to 10000s, voltage 
/current slew rate control and 8 bit TTL output for automated test applications.  Applications include DC/DC Converter & Inverter 
voltage dropout testing, engine start-up simulation, battery automated charging, product life cycle testing and airborne avionics testing. 

Soft Start Testing Voltage Step Waveform

Front Panel

Remote GPIB
Master RS-485 Slave

80

60

40

20

15	   30	    45	    60

P1

P2

P3

P4
P5

V

I

Chroma 62012P-80-60
operating region

Conventional Power
Supply operating region
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D/D Converter Cycle drop Testing

D/D Converter Surge Testing Pulse Charge of Battery

Life Cycle Testing Line Regulation Testing

Turn on Time of Setting 80V Voltage Sequence Program

The 62000P Supplies provide 8 output 
TTL bits with timing control.  These 
control l ines can be used for VID 
control of VRMS or to control other 
discrete signals.
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D/D Converter Sag Testing
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 PANEL DESCRIPTION

1 2 3 7654

8 9 10 11

12 19181716151413 20

	1.	 LCD Display	 Display setting, readings and operating status
	2.	 PROG Key	 Program the sequence
	3.	 CONFIG Key	 Set the system configuration
	4.	 VOLTAGE Key	 Set the output voltage
	5.	 CURRENT Key	 Set the output current limit
	6.	 NUMERIC Key	 Set the data
	7.	 ROTARY Key	 Adjust the V&I and set the parameter
	8.	 POWER Switch

	9.	 OUTPUT Key	 Enable or disable the output
	10.	LOCK Key	 Lock all settings
	11.	OUTPUT Terminal	 Connect the output cable to a UUT

	12.	OUTPUT Terminal	 Connect the output cable to a UUT
	13.	Sense Terminal	 Connect the UUT for voltage compensation
	14.	System Fan

	15.	Analog programming interface	 For analog level to program and monitor output voltage & current
	16.	System I/O port	 Send 8 bit TTL, DC-ON, fault output signal and remote inhibit  
			   and trigger input signal
	17.	GPIB Connector(Optional)

	18.	RS-232 Connector

	19.	RS-485 Connector	 For master/slave control
	20.	AC Input Terminal

Model : 62012P-80-60

Model : 62012P-80-60
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 ORDERING INFORMATION

62006P-100-25 : Programmable DC Power Supply, 100V / 25A / 600W
62006P-300-8 : Programmable DC Power Supply, 300V / 8A / 600W
62012P-80-60 : Programmable DC Power Supply, 80V / 60A / 1200W
62012P-100-50 : Programmable DC Power Supply, 100V / 50A / 1200W
62012P-600-8 : Programmable DC Power Supply, 600V / 8A / 1200W
62024P-80-60 : Programmable DC Power Supply, 80V / 60A / 2400W
62024P-100-50 : Programmable DC Power Supply, 100V / 50A / 2400W
62050P-100-100 : Programmable DC Power Supply, 100V / 100A / 5000W
A620004 : GPIB Interface for Model 62000P Series
A620006 : Rack Mounting Kit for Model 62000P Series
A620009 : Softpanel for 62000P Series

All specifications are subject to change without notice.

Model 62006P-100-25 62006P-300-8 62012P-80-60 62012P-100-50 62012P-600-8       62024P-80-60 62024P-100-50 62050P-100-100
Output Ratings
Output Voltage 0~100V 0~300V 0~80V 0~100V 0~600V 0~80V 0~100V 0~100V
Output Current 0~25A 0~8A 0~60A 0~50A 0~8A 0~60A 0~50A 0~100A
Output Power 600W 600W 1200W 1200W 1200W 2400W 2400W 5000W
Line Regulation    

Voltage 0.01%+6mV 0.01%+18mV 0.01%+8mV 0.01%+10mV 0.01%+18mV              0.01%+8mV  0.01%+10mV 0.01%+10mV 
Current 0.01%+5mA 0.03%+20mA 0.01%+10mA 0.01%+12mA 0.03%+20mA         0.01%+10mA 0.01%+12mA 0.01%+12mA
Load Regulation
Voltage 0.01%+10mV 0.01%+50mV 0.01%+12mV 0.01%+18mV 0.01%+50mV          0.01%+12mV 0.01%+18mV 0.01%+18mV
Current         0.01%+5mA 0.03%+40mA 0.01%+20mA 0.01%+28mA 0.03%+40mA         0.01%+20mA 0.01%+28mA 0.01%+28mA
Voltage Measurement
Range 20V/100V 60V/300V 16V/80V 20V/100V 120V/600V 16V/80V 20V/100V 20V/100V
Accuracy 0.05% + 0.05%F.S.
Current Measurement
Range 5A/25A 1.6A/8A 12A/60A 10A/50A 1.6A/8A 12A/60A 10A/50A 20A/100A
Accuracy 0.1% + 0.2%F.S. 0.1% + 0.1%F.S.
Output Noise (0 ~ 20MHz) 
Voltage Ripple (P-P) 85 mV 180 mV 100 mV 100 mV 180 mV 100 mV 100 mV 125 mV
Voltage Ripple (rms) 10 mV 90 mV 10 mV 15 mV 90 mV 10 mV 15 mV 20 mV
Current Ripple (rms) 10 mA 60 mA 30 mA 20 mA 60 mA 30 mA 20 mA 30 mA
OVP Adjustment Range 110% of Vset to 110% of Vmax
Efficiency 0.75 0.75 0.8 0.8 0.8 0.85 0.85 0.85
Drift (8 hours)
Voltage 0.02% of Vmax
Current 0.04% of Imax
Temperature Coefficient
Voltage 0.02% of Vmax/ °C
Current 0.04% of Imax/ °C
Transient 
Response Time 3 mS 3mS 3 mS 3 mS 3mS 3mS 3mS 3mS

10 % step change 180 mV 600 mV 250 mV 250 mV 600 mV 250 mV 250 mV 250 mV

AC Input Voltage 95 to 250Vac 190 to 250Vac 
(Single phase)

190 to 250Vac 
(Single phase)

190 to 250Vac 
(3phase 4 wire,

Delta connection) or 
342 to 440Vac
(3phase 5 wire, 
Y connection)

Weight 13kg 13kg 13kg 13kg 13kg 13kg 13kg 25kg
Operating Temperature 0~40°C 0~40°C 0~40°C 0~40°C 0~40°C 0~40°C 0~40°C 0~40°C
Dimensions 
(HxWxD) mm 88 x 428 x 425 88 x 428 x 425 88 x 428 x 425 88 x 428 x 425 88 x 428 x 425 88 x 428 x 425 88 x 428 x 425 177 x 428 x 425
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All specifications are subject to change without notice.

Distributed by:

Worldwide Distribution and Service Network
62000P-200711-PDF

CHINA
CHROMA ELECTRONICS 
(SHENZHEN) CO., LTD.
8F, No.4, Nanyou Tian An 
Industrial Estate, Shenzhen, 
China PC: 518054
Tel: +86-755-2664-4598
Fax: +86-755-2641-9620

U.S.A.
CHROMA ATE INC. (U.S.A.)
7 Chrysler Irvine, CA 92618
Tel: +1-949-421-0355
Fax: +1-949-421-0353
Toll Free: +1-800-478-2026

CHROMA ATE INC.
致茂電子股份有限公司
HEADQUARTERS
66, Hwa-Ya 1st Rd., Hwa-Ya 
Technology Park, Kuei-Shan Hsiang, 
Taoyuan Hsien 33383, Taiwan  
Tel: +886-3-327-9999  
Fax: +886-3-327-8898
http://www.chromaate.com
E-mail: chroma@chroma.com.tw

Developed and Manufactured by :

EUROPE 
CHROMA ATE EUROPE B.V.
Morsestraat 32, 6716 AH Ede,
The Netherlands
Tel: +31-318-648282
Fax: +31-318-648288

OTHER SPECIFICATIONS
Programming &Measurement Resolution
Voltage (Front Panel) 10 mV
Current (Front Panel) 10 mA
Voltage (Remote Interface) 0.003% of Vmax
Current (Remote Interface) 0.002% of Imax
Voltage (Analog Programming Interface) 0.04% of Vmax
Current (Analog Programming Interface) 0.04% of Imax
Programming Accuracy
Voltage Programming (Front Panel and Remote Interface) 0.1% of Vmax
Voltage Programming (Analog Programming Interface) 0.2% of Vmax
Current Programming (Front Panel and Remote Interface) 0.3% of Imax
Current Programming (Analog Programming Interface) 0.3% of Imax
Programming Response Time
Rise Time: For a programmed 5% to 95% step of rated voltage. (Full Load) 10 ms
Rise Time: For a programmed 5% to 95% step of rated voltage. (No Load) 10 ms
Fall Time: For a programmed 95% to 5% step of rated voltage. (Full Load) 60 ms
Fall Time: For a programmed 95% to 5% step of rated voltage. (No Load) 840 ms (max.) / 4S for 600V models
Vout setting (GPIB send command to DC Power Supply receiver) 20 ms
?Volt, ? Current (under GPIB command using Fetch) 25 ms
?Volt, ? Current (under GPIB command using Measure) 70 ms
Analog Programming Interface
Voltage and Current Programming inputs 0~10Vdc or 0~5Vdc of F.S.
Voltage and Current monitor 0~10Vdc or 0~5Vdc of F.S.
Isolation: Maximum working voltage of any analog programming signal with respect to chassis potential 70 Vdc
Auxiliary Power Supply
Output Voltage 12 Vdc
Maximum current source capability 10 mA
Remote Inhibit Function
Use to disable the output of DC Power Supply; Active Low TTL
DC-ON Output Signal
Indicate the output status, Active High TTL
Fault Output Signal
Indicate if there is a fault/protection occurred, Active Low TTL
Series & Parallel operation function with Master / Slave control
Voltage limit @ Series Mode. (Model 62012P-600-8) 800 Volt
Voltage limit @ Series Mode (Refer to Ground) 240 Volt
Number of DC Power Supplies allowed @ master / slave control mode 5
Auto Sequencing Programmable Function
Number of program 10
Number of sequence 100
Time Range 5 ms ~ 15000 S
TTL signal out 8 bits
TTL source capability 7 mA
Slew Rate Control Function
Voltage slew rate range (The fall rate will be affected by the discharge rate of the output capacitors especially under no 
load condition.)

0.01V ~ 10V/ms

Current slew rate range of current 0.01A ~ 1A/ms
Minimum transition time 0.5 ms
Remote Sense
Line loss compensation 5V
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The Sorensen SL series electronic loads offer the 
best value with the most flexible platform. A wide 
range of loads are available from 75-1800W with 
both DC and AC input in benchtop, modular and 
standalone form factors.

SLM Mainframe 
The SLM mainframe choices include a convenient 
single-bay configuration for benchtop/desktop 
applications or a four bay configuration for 
multichannel and ATE requirements. Either chassis 
is compatible with SLM- and SLD- loads. Each 
chassis contains non-volatile memory capable of 
storing up to 150 module setups and nine 16-step 
sequences for automated, standalone testing. 
Or for more complex test sequences, the chassis 
come with GPIB (optional on SLM-1) and RS-232 
as standard interfaces. 

SLM Family
The SLM family includes nine models of fully 
programmable, single input AC or DC modular 
electronic loads. DC models are offered to 
test power supplies, battery chargers, battery 
discharge, power supply transient response and 
integration into ATE systems. AC models are ideal 
to test low power inverters.

The DC models support operation in Constant 
Current (CC), Constant Voltage (CV), Constant 
Resistance (CR) or Constant Power (CP) mode 
as well as a short simulation. Engineers have 

ultimate control of current waveforms by using 
either the analog input or CC dynamic mode. 
An analog input (single input DC models) allows 
arbitrary current waveforms up to 20kHz with an 
external 0-10V signal. In dynamic mode, the pulse 
generator allows fast state switching between 
two programmed current levels with programmed 
slew rate and dwell times.

SLD Family
The SLD family offers six models of fully 
programmable, dual input modular electronic 
loads. These DC modules are specifically designed 
for low power, high channel count testing and 
provide the highest channel density available.

SLH Family
Fully programmable, high power AC or DC 
electronic loads. The 500V models are for PFC 
testing, power transformers and various other AC 
or DC power sources. The 300V models are used 
for testing of UPSs, automatic voltage regulators 
(AVR), and batteries.

• High current, 60V DC models for general   
    purpose power supply testing

• High voltage,AC/DCmodels are intended  
    for inverter test,

• Power Factor Correction (PFC) circuit testing 
    (500V) and UPS testing (300V)

Sorensen SL Series 75 W–14.4 kW

• Flexible Product Line 
- Low power DC modules 
- Low power AC modules 
- High power DC,

• Remote: GPIB, RS-232, Analog

• DC Modes: CC, CR, CV, CP

• AC Modes: CR, CC with crest factor control

• Dynamic mode with slew rate control

• Flexible Data Feedback

• Current monitor output (SLM DC only)

DC and AC/DC Electronic Loads

1–720 A

100 115 230

60–500 V
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Electronic Load Selection
Often the selection of programmable power 
supplies is based upon volts and amps capability. 
However when selecting an electronic load, 
it is important to account for volts, amps and 
power. The power limit is displayed on a constant 
power curve. A load must be selected so that 
the operating points are within the Power Curve 
(see Figure 1). For many applications in which 
different power sources are tested, there may be 
high voltage, low current requirements as well 
as low voltage, high current requirements. A 
single load may be able to handle both with good 
programming resolution. In cases where a single 
load may not work, the broad range of current, 
power and voltage available in the SL series 
allows optimum selection depending upon the 
voltage, current, power required.

Applications
Low Voltage Operation 
All SL series loads operate well below 1V. 
However in many applications, such as fuel cell 
research and microprocessor voltage regulator 
modules (VRM), the voltage at the load inputs 
can be 0.1 to 0.2V. This low voltage does not 
allow the load transistors to fully turn-on (bottom 
right corner of the power contour). To utilize the 
full rated current of an electronic load, a boost 
supply can be placed in series to increase the 
voltage. While a fixed voltage DC-DC converter 
can be used as the boost supply, a programmable 
power supply is preferred to keep the load 
voltage at the minimum to draw full current as 
the device under test ramps up in voltage.

V
o

lt
s

Current

Figure 1 - Power Curve

Device Under Test 
(Low Voltage DC  
Power Supply)

SL Series

SLM-4: Chassis SLD: Dual  
Input DC  
Module

SLM: DC  
Module

SLD: Dual  
Input DC  
Module

SLM: AC 
Module

SLH: DC Electronic Load SLH: AC Electronic LoadSLM-1 Chassis
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SLH - Standalone AC Loads

Model SLH-500-4-1200 SLH-500-6-1800 SLH-300-12-1200 SLH-300-12-1800 SLH-300-18-1800

Input Ratings
Power: 1200VA 1800VA 1200VA 1800VA 1800VA
Current: 4Arms 6Arms 12Arms 12Arms 18Arms
Voltage: 300Vrms / 500Vdc 300Vrms / 500Vdc 300Vrms 300Vrms 300Vrms
Frequency: DC, 40 - 70Hz (CC Mode) ; DC - 70Hz (CR Mode)

CC Mode
Range: 0-2 / 2-4A 0-3 / 3-6A 0-6 / 6-12A 0-6 / 6-12A 0-9 / 9-18A
Resolution: 0.5 / 1mA 0.75 / 1.5mA 1.5 / 3mA 1.5 / 3mA 2.25 / 4.5mA
Accuracy: ±0.5% of (setting + range)
Low Current: 0 - 0.2A 0 - 0.3A 0 - 0.6A 0 - 0.6A 0 - 0.9A
Accuracy: ±(0.5% of reading + 0.2% of range)
Maximum Peak Current: 8A 12A 24A 24A 18A

CR Mode
Range 1: (I>0.5% of rating) 50 - 200,000Ω 33.33 - 133,000Ω 20 - 80,000Ω 20 - 80,000Ω 13.3 - 53,333Ω
Range 2: (I>50% of rating) 12.5 - 50Ω 8.33 - 33.33Ω 5 - 20Ω 5 - 20Ω 3.33 - 13.33Ω

4 1/2 DVM
Range: 0-500V 0-500V 300V 300V 300V
Resolution: 0.1V 0.1V 0.1V 0.1V 0.1V
Accuracy: ±(0.5% of reading + 0.2% of range)

4 1/2 DAM
Range: 0-4A 0-6A 0-12A 0-12A 0-18A
Resolution: 1mA 1mA 1mA 1mA 1mA
Accuracy: ±(0.5% of reading + 2% of range) ; ±0.5% of (reading + range) @ 50/60Hz

4 1/2 Watt Meter
Range: 0-1200W 0-1800W 0-1200W 0-1800W 0-1800W
Resolution: 0.1W
Accuracy: ± (0.5% of reading)±3W

VA / Power Meter: Vrms × Arms
Weight 18.5kgs/40.7lbs 21.5kgs/47.3lbs 18.5kgs/40.7lbs 21.5kgs/47.3lbs 21.5kgs/47.3lbs

SLM - AC Modules

Model SLM-60-20-300 SLM-150-8-300 SLM-300-4-300 SLM-500-1-300

Input Ratings
Power: 300VA 300VA 300VA 300VA
Current: 20Arms 8Arms 4Arms 1Arms
Voltage: 60Vrms 150Vrms 300Vrms 300Vrms / 500Vdc
Frequency: DC, 40 - 70Hz (CC Mode) ; DC - 70Hz (CR Mode)

CC Mode
Range: 0-10 / 10-20A 0-4 / 4-8A 0-2 / 2-4A 0-0.5 / 0.5-1A
Resolution: 2.5 / 5mA 1 / 2mA 0.5 / 1mA 0.125 / 0.25mA
Accuracy: ±0.5% of (setting + range)
Low Current: 0 - 1A 0 - 0.4A 0 - 0.2A 0 - 0.05A
Accuracy: ±2% of (setting + range)
Maxium Peak Current: 40A 16A 8A 2A

CR Mode (1)
Range 1: (I>0.5% of rating) 1.2-4,800Ω 7.5-30,000Ω 30 - 120,000Ω 200 - 800000Ω
Range 2: (I>50% of rating) 0.3 - 1.2Ω 1.875 - 7.5Ω 7.5 - 30Ω 50 - 200Ω

4 1/2 DVM
Range: 60V 150V 300V 500V
Resolution: 0.01V 0.01V 0.1V 0.1V
Accuracy: ±(0.5% of reading + 0.2% of range)

4 1/2 DAM
Range: 20A 8A 4A 1A
Resolution: 0.01A 0.001A 0.001A 0.001A
Accuracy: ±(0.5% of reading + 2% of range); ±0.5% of (reading + range) @ 50/60Hz

4 1/2 Watt Meter
Range: 300W
Resolution: 0.1W
Accuracy: ±(0.5% of reading)±3W

VA / Power Meter: Vrms × Arms
Weight 3.5kgs/7.7lbs

SL Series : Specifications 75 W–14.4 kW
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SLM - DC Modules
Model SLM-60-30-150 SLM-60-60-300 SLM-250-10-300 SLM-500-10-300 SLM-60-15-75
Input Ratings

Voltage: 60V 60V 250V 500V 60V
Current: 30A 60A 10A 10A 15A
Power: 150W 300W 300W 300W 75W
Minimum Voltage: 
(Full Current) 0.6V @ 30A 0.5V @ 60A 0.8V @ 10A 4.5V @ 10A 0.3V @ 15A

CC Mode
Range 1: | Range 2: 0-3A 0-30A 0-6A 0-60A 0-1A 0-10A 0-1A 0-10A 0-1.5A 0-15A
Resolution: 0.8mA 8.0mA 1.6mA 16.0mA 0.268mA 2.68mA 0.268mA 2.68mA 0.4mA 4.0mA
Accuracy: ± 0.2% of (Setting + Range)

CR Mode
Range 1:
(I > 0.02% of RATING) 2-7.5KΩ 1-3.75KΩ 25-18.75KΩ 50-18.75KΩ 4-15KΩ

Range 2: 
(I > 0.2% of RATING) 0.1067-2Ω 0.0534-1Ω 1.333-25Ω 2.67-50Ω 0.213-4Ω

CV Mode
Range: 0-60V 0-60V 0-250V 0-500V 0-60V
Resolution: 0.016V 0.016V 0.067V 0.133V 0.016V
Accuracy: ± 0.1% of (Setting + Range)

CP Mode
Range: 0-150W 0-300W 0-300W 0-300W 0-75W
Resolution: 0.04W 0.08W 0.08W 0.08W 0.02W
Accuracy: ± 0.5% of (Setting + Range)

Short Mode:
Resistance: 0.02Ω 8mΩ 0.08Ω 0.45Ω 0.02Ω
Current: 30A 60A 10A 10A 15A

Dynamic:
T High & T Low: 50µs to 9.999s
Rise/Fall of Range 1: 2.0-125mA/µs 4-250mA/µs 0.8-50mA/µs 0.8-50mA/µs 1.0-62.5mA/µs
Rise/Fall of Range 2: 0.2-1.2A/µs 0.04-2.5A/µs 8.0-500mA/µs 8.0-500mA/µs 10-625mA/µs
Accuracy: ± 10% of Setting

4 1/2 DVM:
Range: 15.0V 60.0V 15.0V 60.0V 30.0V 250.0V 199.99V 500.0V 15.0V 60.0V
Resolution: 0.001V 0.002V 0.001V 0.002V 0.001V 0.01V 0.01V 0.1V 0.001V 0.002V
Accuracy: ± 0.05% of (Reading + Range)

4 1/2 DAM:
Range: 3.0A 30.0A 6.0A 60.0A 1.0A 10.0A 10.0A 1.5A 15.0A
Resolution: 0.001A 0.01A 0.001A 0.01A 0.0001A 0.001A 0.001A 0.0001A 0.001A
Accuracy: ± 0.2% of (Reading + Range)

Current Monitor: 3.0A/V 6.0A/V N/A N/A 1.5A/V
Load ON Volt:

Range: 0.1-25V 0.2-50V 0.4-100V 0.1-25V
Resolution: 0.1V 0.2V 0.4V 0.1V
Accuracy: 1% of Setting + 0.25V 1% + 0.5V 1% of Setting + 1V 1% of Setting + 0.25V

Load OFF Volt: 
Range: 0-25V 0-50V 0-100V 0-25V
Resolution: 0.01V
Accuracy: 1% of Setting + 0.25V 1% + 0.5V 1% of Setting + 1V 1% of Setting + 0.25V

Weight: 3.5kgs/7.7lbs

SL Series : Specifications
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SLD - Dual Input DC Modules
Model: SLD-60-505-255 SLD-61-505-255 SLD-80-20-102 SLD-61-5-752 SLD-62-5-752 SLD-60-105-550
Input Rating:
Channel A B A B A B A B A B A B

Voltage (Volt) +60V +60V +60V -60V +80V +80V +60V -60V -60V -60V +60V +60V
Current (Ampere) 50A 5A 50A 5A 20A 20A 5A 5A 5A 5A 100A 5A
Power (VA) 250W 50W 250W 50W 100W 100W 75W 75W 75W 75W 500W 50W

Minimum Voltage 
(Full Current)

0.4V @ 
50A

0.4V @  
5A

0.4V @ 
50A

0.9V @ 
5A

0.4V @  
20A

0.4V @  
20A

0.4V @ 
5A

0.4V @ 
5A

0.4V @ 
5A

0.4V @ 
5A

0.4V @ 
100A

0.4V @ 
5A

CC Mode:

Range
0 - 5A  
/ 50A

0 - 0.5A  
/ 5A

0 - 5A  
/ 50A

0 - 0.5A  
/ 5A

0 - 2.0A 
 / 20A

0 - 2.0A 
 / 20A

0 - 0.5A  
/ 5A

0 - 0.5A  
/ 5A

0 - 0.5A  
/ 5A

0 - 0.5A  
/ 5A

0 - 10A 
 / 100A

0 - 0.5A  
/ 5A

Resolution
1.34 / 

13.4mA
0.134 / 
1.34mA

1.34 / 
13.4mA

0.134 / 
1.34mA

0.533 / 
5.33mA

0.533 / 
5.33mA

0.134 / 
1.34mA

0.134 / 
1.34mA

0.134 / 
1.34mA

0.134 / 
1.34mA

2.66 / 
26.6mA

0.134 / 
1.34mA

Accuracy ±0.2% of (Setting + Range)
CR Mode:

Range 1: (Ω) 
(I>0.02% of rating)

1.2 - 
 4500

12 -  
45000

1.2 - 
4500

12 -  
45000

4 -  
15000

4 -  
15000

12 -  
45000

12 -  
45000

12 -  
45000

12 -  
45000

0.6 -  
2250

12 -  
45000

Range 2: (Ω) 
(I>0.2% of rating)

0.04-1.2 0.4-12 0.04-1.2 0.4-12 0.133-4 0.133-4 0.4-12 0.4-12 0.4-12 0.4-12 0.02-0.6 0.4-12

CV Mode
Range 0 – 60V 0 – (-60)V 0 – 60V 0 – (-60)V 0 – 60V
Resolution 16mV 21.3mV 16mV
Accuracy ±0.2% of (Setting + Range)

Short Mode
Resistance 8mΩ 0.08Ω 8mΩ 0.18Ω 0.02Ω 0.02Ω 0.02Ω 0.06Ω 0.06Ω 0.06Ω 4mΩ 0.08Ω
Current 50A 5A 50A 5A 20A 20A 5A 5A 5A 5A 100A 5 A

Dynamic Mode
T High / T Low 50µs to 9.999s
Slew Rate  
(mA/µs)

4-200 
40-2000 

0.4-20 
4-200

4-200  
40-2000

0.4-20  
4-200

1.6-80 
16-800

1.6-80 
16-800

0.4-20 
4-200 

0.4-20 
4-200 

0.4-20 
4-200 

0.4-20 
4-200 

8-400 
80-4000

0.4-20
4-200

Resolution
(mA/µs)

0.8
8

0.08
0.8

0.8
8

0.08
0.8

0.32
3.2

0.32
3.2

0.08
0.8

0.08
0.8

0.08
0.8

0.08
0.8

1.6
16

0.08
0.8

Accuracy ±(10% +10µs)
4 1/2 DVM:

Range 15V / 60.00V 20V / 80V 15V / 60.00V
Resolution 0.001 V / 0.01 V
Accuracy ±0.05% of (Reading + Range)

4 1/2 DAM:

Range 15A / 50A
1.5A /  

5A
15A / 50A

1.5A /  
5A

2.0A /  
20A

2.0A / 
20A

1.5A /  
5A

1.5A /  
5A

1.5A /  
5A

1.5A /  
5A

10 /  
100A

1.5A /  
5A

Resolution
1mA /  
10mA

0.1mA /  
1mA

1mA /  
10mA

0.1mA /  
1mA

0.1mA /  
1mA

0.1mA /  
1mA

0.1mA /  
1mA

0.1mA /  
1mA

0.1mA /  
1mA

0.1mA /  
1mA

1 /  
10mA

0.1mA /  
1mA

Accuracy ±0.2% of (Reading + Range)
Load ON Voltage

Range 0.1-25V
Resolution 0.1V
Accuracy 1% of Setting +0.25V

Load OFF Voltage
Range 0-25V
Resolution 1mV
Accuracy 1% of Setting +0.25V

SL Series : Specifications 75 W–14.4 kW
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SLH - Standalone DC Loads 
Model SLH-60-120-600 SLH-60-120-1200 SLH-60-120-1800 SLH-60-240-1200 SLH-60-240-1800 SLH-60-360-1800 SLH-500-60-1800
Input Ratings

Voltage 60V 500 V
Current 120A 240A 360A 60 A
Power 600W 1200W 1800W 1200W 1800W 1800W 1800 W

Minimum Voltage 
(Full Current)

0.5V @ 120A 0.4V @ 120A 0.3V @ 120A 0.5V @ 240A 0.5V @ 240A 0.4 @ 360A 6V @ 60A

CC Mode
Range 0-12 / 0-120A 0-24 / 0-240A 0 - 36 / 360A 0 - 6/60 A
Resolution 3.2 / 32mA 6.4 / 64mA 9.6 / 96mA 1.6/16 mA
Accuracy ±0.2% OF (SETTING + RANGE)

CR Mode

Range 1
(I>0.05% of rating)

0.5 - 1875Ω 0.25 - 937.50Ω 0.167 - 624.9Ω 8.33 - 18750Ω

Range 2
(I>0.5% of rating)

0.027 - 0.5Ω 0.0133 - 0.25Ω 8.3 - 167mΩ 0.444 - 8.33Ω

CV Mode
Range 0 - 60V 0 - 500 V
Resolution 0.016V 0.133V
Accuracy ±0.1% OF (SETTING + RANGE)

CP Mode
Range 0 - 600W 0 - 1200W 0 - 1800W 0 - 1200W 0 - 1800W 0 - 1800W 0-1800W
Resolution 0.16W 0.32W 0.48W 0.32W 0.48W 0.48W 0.48W
Accuracy ±0.5% OF (SETTING + RANGE)

Short Mode
Maximum Resistance 4.2mΩ 3.3mΩ 2.5mΩ 2.1mΩ 1.1mΩ 0.1 Ω
Current 120A 240A 360A 60A

Dynamic Mode
T High / T Low 50µs to 9.999s
Slew Rate Low 8mA - 500mA/µs 16mA - 1A/µs 24mA - 1.5A/µs 4.8-300 mA/µs
Slew Rate High 80mA - 5A/µs 0.160A - 10A/µs 0.24A - 15A/µs 0.048-3.0 A/µs
Accuracy ±(10% OF SETTING +10µs)

4 1/2 DVM
Range 0 - 20.00 / 60.00V 0 - 60.00/600.0
Resolution 0.001 / 0.01V 0.01/0.1V
Accuracy ±0.05% OF (READING + RANGE)

4 1/2 DAM
Range 0 - 12A / 0 - 120A 0 - 24A / 0 - 240A 0 - 36A / 0 - 360A 0 - 6/60 A
Resolution 1mA / 4mA 1mA / 10mA 1.2mA / 12mA 0.001A/0.01A
Accuracy ±0.5% OF (READING + RANGE)

Current Monitor 12A/V 24A/V 36A/V N/A
Load ON Volt

Range 0.1 - 25V 0.4 - 100V
Resolution 0.1V 0.4V
Accuracy 1% of SETTING +0.25V

Load OFF Volt
Range 0 - 25V 0 - 100V
Resolution 0.1V
Accuracy 1% of SETTING +0.25V
Weight 15.2kgs./33.4lbs 19.4kgs/42.7lbs 23.6kgs/51.9lbs 19.4kgs/42.7lbs 23.6kgs/51.9lbs 23.6kgs/51.9lbs 23.6 kgs. / 51.9 lbs.

SL Series : Specifications
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75 W–14.4 kWSL Series : Specifications
Common 

Software LabVIEW Driver can be downloaded at no cost: www.elgar.com/products/SL/SL_Downloads.htm

Regulatory Certified to UL/CSA 61010 and IEC/EN 61010-1, CE Compliant (LVD and EMC Directives)

Environmental Operating Temperature: 0˚ to 40˚C
Storage Temperature: -10˚ to 65˚C

Cooling Front, Side, Top Air Inlets, Rear Exhaust, Units may be rackmounted without spacing.

SLH Memory 150 Settings for DC, 5 Settings for AC

Readback Voltage, Current, Power: 16-bit resolution, VA: Vrms x Arms

Analog Input SLM: DB9 connector, SLH: BNC connector. DC, Single Input (SLH or SLM), CC Mode: 0-10V = 0 – FS, Bandwidth: 20kHz, 
Sums Current with Programmed Value

AC (SLH or SLM) Sync signal on zero crossing

Remote Programming SLM-1: RS-232C, GPIB (Optional), SLM-4: RS-232C, GPIB, analog, SLH: RS-232C, GPIB, analog

Dynamic Mode (DC Models) 
(see Figure 4)

Mode: CC, T-high, T-low: 50 µs to 9.999 sec, Slew Rate: See Specification Tables, I high, I low: 0 to Rated Current

Options and Accessories -1:  GPIB, SLM-1 or SLM-4 only	
-01: 100/200V AC input, SLM-1 only	
-11: 100/200V AC input and GPIB	
M12: Front panel bus bar, SLH DC only	
M23: Front panel bus bar and 100/200V AC Input, SLH DC only

Input Power

Line: 115V / 230V ± 10%, switch selectable or 100V / 200V ± 10% switch selectable (optional)

Frequency: 50 / 60Hz

Power Consumption 100W Maximum 

Protection: AC input fuses

OVP, OCP, OPP: ~5% above rated maximum

OTP: ~85°C Heat sink temperature

DC Loads: Reverse Polarity All protection modes turn off LOAD input

Hardware Input Voltage Limit: 60V Rated DC Input: 100V, 250V Rated DC Input: 400V, 500V Rated DC and all AC Input: 900V

SLM Chassis

Memory 150 memory settings for DC modules, 5 memory settings for AC modules, Memory settings store entire chassis condition

Sequencer (see Figure 2)

Control Front panel

Timing 100ms-9.9 secs per step

Maximum Steps per Sequence 16

Number of Sequences 9

Programming

All Parameters 12-bit resolution

AC Crest Factor (see Figure 3) Sinewave: √2, 1.5-3.5, Resolution: 0.1
Squarewave: 1.0-3.4, Resolution: 0.1 

DC √2, 2.0-3.5, Resolution: 0.5

Maximum Peak Current = 2 x Rated Current

Fig.2 - Sequencer for Modules Fig.3 - Crest Factor for AC models Fig.4 - Dynamic Mode for DC models 
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(-11)PPPP- -XSL

Type

VVV

Voltage

Maximum Power (watts, VA)

100/200V AC Input (SLH only)

CCC

Current

M = modular
D = Dual Input
H = High Power

- -

SLH Stand Alone DC Loads

Model Number Description

SLH-60-120-600 60V / 120A / 600W rack mounted, programmable DC load

SLH-60-120-1200 60V / 120A / 1200W rack mounted, programmable DC load

SLH-60-120-1800 60V / 120A / 1800W rack mounted, programmable DC load

SLH-60-240-1200 60V / 240A / 1200W rack mounted, programmable DC load

SLH-60-240-1800 60V / 240A / 1800W rack mounted, programmable DC load

SLH-60-360-1800 60V / 360A / 1800W rack mounted, programmable DC load

SLH-500-60-1800 500V / 60A / 1800W rack mounted, programmable DC load

SLH-500-4-1200 500Vdc/300Vrms / 4A / 1200W rack mounted, programmable DC load

SLH-500-6-1800 500Vdc/300Vrms / 6A / 1800W rack mounted, programmable AC/DC load

SLH-300-12-1200 300Vrms / 12A / 1200W rack mounted, programmable AC/DC load

SLH-300-12-1800 300Vrms / 12A / 1800W rack mounted , programmable AC/DC load

SLH-300-18-1800 300Vrms / 18A / 1800W rack mounted , programmable AC/DC load

All SLH models include rackmount handles with ears.

(1) 

100/200V AC Input 

SLM & SLD Modular Loads

Code Module / Chassis Description

C SLM-4 Mainframe Chassis, Four (4) Bay for SLM, SLD modular loads includes GPIB/RS-232C

C SLM-1 Mainframe Chassis, Single bay for SLM, SLD modular loads

10 SLM-60-30-150 DC Module, 60V / 30A / 150W

11 SLM-60-60-300 DC Module, 60V / 60A / 300W

12 SLM-250-10-300 DC Module, 250V / 10A / 300W

14 SLM-500-10-300 DC Module, 500V / 10A / 300W

15 SLM-60-15-75 DC Module, 60V / 15A / 75W

32 SLD-80-20-102 DC dual input module, 80V / 20A / 100W x 2

30 SLD-60-505-255 DC dual input module, 60V / 50A / 250W, 60V / 5A / 50W

31 SLD-61-505-255 DC dual input module, 60V / 50A / 250W, -60V / 5A / 50W

33 SLD-61-5-752 DC dual input module, 60V / 5A / 75W, -60V / 5A / 75W

34 SLD-62-5-752 DC dual input module, -60V / 5A / 75W x 2

35xx SLD-60-105-550 DC dual input module, 60V / 100A / 500W, 60V / 5A / 50W

50 SLM-60-20-300 AC/DC Module, 60V / 20A / 300W

51 SLM-150-8-300 AC/DC Module, 150V / 8A / 300W

52 SLM-300-4-300 AC/DC Module, 300V / 4A / 300W

53 SLM-500-1-300 AC/DC Module, 500Vdc/300Vrms / 1A / 300W

BB SLM-BB Blank Panel

SL Series 75 W–14.4 kW
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Appendix G

Hardware Dependdencies

In this section, the details of hardware dependencies in the test setup is presented.
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Appendix H

LabVIEW Programs

The programs developed for this setup is given in this section. In this section, the details

of hardware dependencies in the test setup is presented.
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Figure H.1: The Ethernet communication loop, core 1
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Figure H.2: The CAN communication loop, core 2
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Figure H.3: The battery cycler control loop, core 3
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Figure H.4: The high-fidelity model solver, core 4
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Appendix I

Battery Managemanet Systems

Parameters
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------- SYSTEM DATAS ------------------------------ 

FlatModel: 1S (3C) Cells: 3  

---------------------------------------------------- 

PCM-ID  Software Version: 1.3.4 09.07.2008 

0x0300= Version DataSp. :     98 

0x0301= Number of Slaves:      1  

0x0302= Number of Cells :      3  

0x0303= Cells per Slaves:      3  

0x0304= Sensor  Type    :      1 small sensor  

0x0305= Battery Type    :     50 BAT_GAIA_MTA 

0x0306= User    Type    :     25 GAIA_MTA 

0x0307= Config-Bits     : 0x0001 Datastring on 

0x0308= SecRelais Type  :      1 KILOVAC-DIG 

0x0309= Current Factor  :   1500  

0x030A= CAN Btr0 Btr1   : 0xC149 250 kbps 

0x030B= CAN IDs ErrWrn  :  0x000 [->0x001] 

0x030C= CAN IDs Wakeup  :  0x010 [->0x011] 

0x030D= CAN IDs Data    :  0x100 [->0x101] 

0x030E= CAN IDs Diag    :  0x102 [->0x103] 

0x030F= CAN IDs PCM     :  0x104 [->0x105] 

0x032A= CAN ID OPUSLP10 :  0x640 enable 

0x0340= Use segmented BattModel:   0 disable  

0x0341= Bat= # of par. Strings :   1 

0x0342= Str= # of ser. Moduls  :   1 

0x0343= Mod= # of Cells per Slv: 0x0000000A 

 

------- PARAMETER ---------------------------- 

PCM-ID  Software Version       : 1.3.4 09.07.2008 

0x0300: Version DataSpace      :           98 

0x0100: Capacity               :     27000000 mAs   7.50 Ah 

0x0101: Rtc-Wakeup Short       :           10 min 

0x0102: Rtc-Wakeup Long        :          240 min 

0x0103: Min KL30               :        24000 mV 

0x0104: KL15_on_prz            :           25 % 

0x0105: Err-U-Min-Cell         :         2700 mV 

0x0106: Err-U-Max-Cell         :         4200 mV 

0x0107: Warn-U-Min-Cell        :         2800 mV 

0x0108: Warn-U-Max-Cell        :         4100 mV 

0x0109: RI-0-Charge            :           10 0.1 mOhm 

0x010A: RI-0-Discharge         :           20 0.1 mOhm 

0x010B: RI-0-TempFakt          :            0  

0x010C: Err-Temp-Min-Charge    :         -250 0.1 Cel 

0x010D: Err-Temp-Max-Charge    :          600 0.1 Cel 

0x010E: Err-Temp-Min-Discharge :         -300 0.1 Cel 

0x010F: Err-Temp-Max-Discharge :          600 0.1 Cel 

0x0110: Warn-Temp-Min-Charge   :         -200 0.1 Cel 

0x0111: Warn-Temp-Max-Charge   :          500 0.1 Cel 

0x0112: Warn-Temp-Min-Discharge:         -200 0.1 Cel 

0x0113: Warn-Temp-Max-Discharge:          500 0.1 Cel 

0x0114: Err-I-Max-Charge       :       120000 mA  16.00 C 

0x0115: Err-I-Max-Discharge    :       150000 mA  20.00 C 

0x0116: Warn-I-Max-Charge      :       110000 mA  14.67 C 
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0x0117: Warn-I-Max-Discharge   :       140000 mA  18.67 C 

0x0118: IPeak-Max-Charge_Im    :       120000 mA  16.00 C 

0x0119: IPeak-Max-Discharge_Im :       150000 mA  20.00 C 

0x011A: IPeak-Max-Charge       :       120000 mA  16.00 C 

0x011B: IPeak-Max-Discharg     :       150000 mA  20.00 C 

0x011C: IPeak-40ms_N           :          750 n    30.0 s 

0x011D: Warn KiloVAC OverCur-SD:            0 n   disable 

0x011E: Err  KiloVAC OverCur-SD:            0 n   disable 

0x011F: Err-RSafe-Slv-Min      :           20 Ohm 

0x0120: Err-RSafe-Slv-Max      :          200 Ohm 

0x0121: IBat-Ignore            :            9 mA  

0x0122: Warn-SoC-Underflow     :          200 0.1 % 

0x0123: Warn-SoC-Overflow      :          800 0.1 % 

0x0124: Cycle-Time TU          :         1000 ms 

0x0125: I-Bat0                 :          200 mA 

0x0126: t-Bat0-min             :          600 s  

0x0127: Dislog-DeltaUc         :           10 mV 

0x0128: Dislog-MinUc           :         3400 mV 

0x0129: Dislog-IdleCnt         :           10  

0x012A: UCErr exp.timer        :           10 s enable 

0x012B: UCErr I Charge-Ofl     :          100 mA 

0x012C: UCErr I Discharge-Ufl  :          500 mA 

0x012D: SD Errorcounter Limit U:            1 n  

0x012E: SD Errorcounter Limit I:            1 n  

0x012F: SD Errorcounter Limit T:            1 n  

0x0130: SD Errorcounter Limit R:            1 n  

0x0131: Use dynamic Ri         :            0 disable 

0x0132: Use only Hi-Curr-Meas  :            0 no 

0x0133: Dislog Activ if IBat > :         -500 mA  

0x0134: General Application-ID :     00000000 

0x0135: Max UCell-Diff Warning :            0 mV disable 

0x0136: Max UCell-Diff Error   :            0 mV disable 

0x0137: SD Errorcounter Limit D:            1 n  

0x0138: SD Errorcounter Limit S:            1 n  

0x0139: Simulate Slave Ntc     :            0 no 

0x013A: Simulate Slave RSafe   :            0 no 

0x013B: Master RSafe: Polarity :            0 normal 

0x013C: SecSwitch   : Polarity :            1 invers 

0x013D: SecSwitch -> ShDown KV?:            1 yes 

0x013E: Allow CAN ext. CmdSet1?:            0 no 

0x013F: CAN WatchDog Mode     ?:            0 no, disabled 

0x0140: Cooling Start at       :          300 0.1 Cel 

0x0141: Cooling Stop  at       :          250 0.1 Cel 

0x0142: Cooling Fan-Port       :            1 Nr  

0x0150: Delayed Shutdown Mode  : 00 : None  

0x0151: Delayed Shutdown Time  :            0 n  disable 

0x0152: Delayed Shdn Presettime:            0 n 

0x0153: Usr-Tim-Chg  Limit  I >:            0 mA 

0x0154: Usr-Tim-Dchg Limit -I <:            0 mA 

0x0155: Fan-Overrides SoC  1..4:  00.00.00.00  

0x0180: SoC-OCV Method number  :            0 nr 

0x0182: SD Errorcnt Limit CanWD:            1 n  
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0x01E0: AutoDiagSend ADS_tab[0]:         0x00 -free- 

0x01E1: AutoDiagSend ADS_tab[1]:         0x00 -free- 

0x01E2: AutoDiagSend ADS_tab[2]:         0x00 -free- 

0x01E3: AutoDiagSend ADS_tab[3]:         0x00 -free- 

0x01E4: AutoDiagSend ADS_tab[4]:         0x00 -free- 

0x01E5: AutoDiagSend ADS_tab[5]:         0x00 -free- 

0x01E6: AutoDiagSend ADS_tab[6]:         0x00 -free- 

0x01E7: AutoDiagSend ADS_tab[7]:         0x00 -free- 

0x0200: soc_tab[ 0]  0%        :         3377 mV 

0x0201: soc_tab[ 1] 10%        :         3450 mV 

0x0202: soc_tab[ 2] 20%        :         3523 mV 

0x0203: soc_tab[ 3] 30%        :         3596 mV 

0x0204: soc_tab[ 4] 40%        :         3669 mV 

0x0205: soc_tab[ 5] 50%        :         3742 mV 

0x0206: soc_tab[ 6] 60%        :         3815 mV 

0x0207: soc_tab[ 7] 70%        :         3888 mV 

0x0208: soc_tab[ 8] 80%        :         3961 mV 

0x0209: soc_tab[ 9] 90%        :         4034 mV 

0x020A: soc_tab[10]100%        :         4107 mV 
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