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I. INTRODUCTION

Humans are remarkably agile and dexterous, despite their
extremely slow neuromuscular system. We propose that this
is accomplished by encoding movements based on (at least)
three distinct classes of motor primitives — submovements
and oscillations for forward-path control of motion, and me-
chanical impedances for managing physical interaction [1].
Composing movements in terms of parameterized primitive
actions may be an essential simplification required for learn-
ing, performance, and retention of complex manipulation
skills. To test this hypothesis, we studied one of the most
complex and exotic tools which humans can manipulate —
a whip.

Studying how humans learn to manipulate a complex
objects such as a whip promises new insights. In fact,
a whip forces us to confront the daunting complexity of
tools which humans routinely master. A whip is a flex-
ible object, with non-uniform mechanical properties, that
interact with complex compressible fluid dynamics and,
in the case of whip-cracking, operate into the supersonic
regime [2]. An engineering/physics based model competent
to describe the complex whip dynamics requires nonlinear
partial differential equations of infinite order. Controlling
this extremely high degrees-of-freedom (DOFs) object (in
principle an infinite number) with complex dynamics is a
challenge, especially when popular optimization-based meth-
ods are involved which scale poorly with system dimensions.
Dubbed the “curse of dimensionality” by Richard Bellman
[3], optimization becomes computationally intractable for
even moderately high dimensions (e.g., starting from ∼6 to
10 dimensions) and often fails to converge to an optimal so-
lution. However, almost indifferent to this excruciating com-
plexity, humans learn to manipulate a whip, often without
any apparent difficulties, with some “whip masters” reaching
an impressive level of expertise. This observation suggests
that humans employ a fundamentally different approach than
optimization based on an engineering-style model. Instead,
we speculate that encoding movements in terms of primitive
actions may be the key strategy for humans to manipulate
complex objects.
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We studied (in simulation, using a software called MuJoCo
[4]) whether a distant target could be reached with a whip
using a (small) number of motor primitives, whose parame-
ters could be learned through optimization. Regardless of the
target location in 3D space, this approach was able to manage
the complexity of an extremely high DOF system (54-DOF
yielding a 108-dimensional state-space representation), and
identified the optimal upper-limb movement that achieved the
task. Detailed equations of motion describing the complex
whip dynamics were not needed for this approach, thereby
dramatically simplifying the complexity of the control task.
Simulation results were in good qualitative agreement with
experimental observations which suggests that human sub-
jects may use a small number of primitive motions to reach
a target with a whip [5]. These results support our hypothesis
that composing control using motor primitives may be a
key strategy which humans use to enable their remarkable
dexterity.

II. METHOD

A. Modeling

The model used for the simulation consisted of two main
parts: the upper-limb model (the manipulator) and the whip
model (the object being manipulated). The human upper-
limb was modeled as a two-bar 4-DOF open-chain linkage
— 3-DOF on the shoulder and 1-DOF on the elbow. The
continuous dynamics of a whip was modeled as a equivalent
“lumped-parameter” model, in which the continuum was
approximated and replaced by a finite 50-DOF system com-
posed of three lumped-parameter elements: an (ideal) point-
mass, a linear torsional spring and a linear torsional damper.
Summarizing, the whole system resulted in a 54-DOF open-
chain linkage. The geometrical and inertial parameters of
each limb segment were obtained from a computational
model by Hatze [6], and the whip parameters were obtained
from an experimentally-fitted whip model [7], where the
values were measured and experimentally derived from an
actual bull whip.

B. Controller

To account for physical interaction between the upper-limb
and the whip, the model included a first-order impedance
controller:

τ =K(φ− θ) +B(φ̇− θ̇) + τG (1)

In this equation, K,B ∈ R4×4 are constant symmetric
joint stiffness and damping matrices, respectively; vector
τ (t) ∈ R4 and τG(t) ∈ R4 denote net torque input and



gravity compensation torque on each joint, respectively;
vector θ(t) ∈ R4 denotes the actual joint angle trajectory of
the upper-limb defined in relative angle coordinates; φ(t) ∈
R4 represents a motion command from the Central Nervous
System (CNS) as a zero-torque trajectory, i.e., neglecting
gravitation effects, if the actual joint angle trajectory θ
exactly matches with the zero-torque trajectory φ, no torque
will be exerted by the upper-limb model. Gravitational effects
were compensated with τG, so that the actual upper-limb
posture θ could exactly match the zero-torque posture φ
when the whole model was at rest [8].

The input of the upper-limb controller was the zero-
torque trajectory φ(t), which followed a discrete rest-to-rest
minimum-jerk profile in joint coordinates:

φ(t) = φi + (φf − φi) · (10τ3 − 15τ4 + 6τ5) (2)

where τ ≡ t/D is a normalized time variable defined on
the domain [0, 1]; D is the duration of a single upper-
limb movement; t is time and subscripts i and f denote
the initial and final (zero-torque) postures, respectively. For
times greater than the duration D (i.e., t > D), the zero-
torque trajectory of the upper-limb remained at the final
posture φf . Summarizing, the zero-torque trajectory φ(t)
was determined by 9 movement parameters: 4 for the initial
posture φi, 4 for the final posture φf , and 1 for the
movement duration D.

C. Task Definition and Optimization

The objective of the whip-targeting task was to minimize
the distance between the tip of the whip and the target, L,
with a single discrete upper-limb movement, i.e., a single
set of 9 movement parameters (φi, φf , D). The minimum
value of the distance L reached with a single discrete (i.e.,
rest-to-rest) upper-limb movement, L∗, was the quantitative
measure to assess the performance of the whip-targeting
task, i.e., the objective was to find the optimal 9 movement
parameters which resulted in the minimum L∗ value.

Three different target locations were defined for the whip-
targeting task. To avoid chaotic behavior due to the whip
colliding with a target, all three targets were distanced 0.01m
outside a sphere centered at the shoulder joint, of radius R
equal to the sum of the lengths of the upper limb segments
and the full length of the whip. In a spherical coordinate
system (radius-azimuth-elevation), the three targets were
located at coordinate (R, 0◦, 0◦), (R, 45◦, 0◦) and
(R, 45◦, 45◦), respectively. The DIRECT-L algorithm of
the nlopt (nonlinear optimization) Python tool box was used
for the optimization [9]. Within the bounding box constraint
for the 9 movement parameters [7], [8], the DIRECT-L
optimization algorithm conducted 600 iterations.

III. RESULTS, DISCUSSION AND CONCLUSIONS

Considering the dimensionality of the whole system, this
task is by no means trivial — the task was to coordinate a
54-DOF system (108-DOF in state-space representation) to
reach a distant target. It was not a priori obvious that the
optimization would converge, let alone produce a meaningful

result. Nonetheless, for all three targets, the DIRECT-L
algorithm di converge to an optimal set of 9 movement
parameters that yielded the minimum value of distance L∗

[7], [8]. Encoding upper-limb movements using the parame-
ters of dynamic primitives dramatically simplified the whip-
targeting task and successfully managed the complexity of
an extremely high DOF system.

It is worth emphasizing that the upper-limb controller
was “ignorant” of the complex whip dynamics — the whip-
targeting task was achieved without the need to store or recall
any detailed mathematical representation of the object being
manipulated. Even though it is straightforward to derive the
equations of motion with the Lagrangian dynamics of an
open kinematic chain of rigid bodies, the likelihood of a
successful optimization based on this detailed mathematical
model seems slim indeed. Instead, using dynamic motor
primitives completely avoided the need to acquire the de-
tailed mathematical model of the whip, and the acquisition of
the motor skill was completely substituted with the optimiza-
tion of a small set of movement parameters (9 parameters
for this case) which minimized the objective value L∗. This
approach may be a key simplification required to learn
complex motor skills, since only a small set of parameters
are acquired and retained regardless of the dimensionality
of the object being manipulated. To the extent that dynamic
motor primitives offer a simplified solution to complex and
flexible object manipulation, this approach may facilitate
robotic manipulation of flexible materials, which is presently
still a major challenge.
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