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1 Abstract

Humans are adept at a wide variety of motor skills including the handling of complex

objects and using tools. Advances to understand the control of voluntary goal-

directed movements have focused on simple behaviors such as reaching, uncoupled

to any additional object dynamics. Under these simplified conditions, basic

elements of motor control, such as the roles of body mechanics, objective functions,

and sensory feedback, have been studied in isolation, and the interactions between
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these element have received less attention. This study examined a task with internal

dynamics, inspired by the daily skill of transporting a ‘cup of coffee’, with additional

expected or unexpected perturbations to probe the structure of the controller.

Using optimal feedback control (OFC) as basis, it proved necessary to endow the

model of the body with mechanical impedance to generate the kinematic features

observed in the human experimental data. The addition of mechanical impedance

revealed that simulated movements were no longer sensitively dependent on the

objective function, a highly debated cornerstone of optimal control. Further, feed-

forward replay of the control inputs was as successful in coping with perturbations

as when feedback, or sensory information, was included. These findings suggest

that when the motor control model incorporates a representation of the mechanical

properties of the limb, i.e., embodies its dynamics, the specific objective function

and sensory feedback become less critical and complex interactions with dynamic

objects can be successfully managed.

Introduction

Humans show remarkable dexterity in a wide range of skills, from juggling balls

to a host of seemingly mundane actions in everyday life. For example, reaching

for a glass of wine, swirling it, and leading it to one’s mouth to drink involves

interacting with—and controlling—the complex fluid dynamics acting upon the

hand. Handling such complex and potentially even chaotic dynamics is a feat that

modern robots have failed to accomplish so far. Also in human motor neuroscience,

most research on human movement control to date have only addressed relatively

simple movements, such as moving one’s hand from point to point, void of any
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dynamics arising from objects and interactions with the environment. Consequently,

models of human motor control may have remained relatively simple as they did

not have to deal with complex and sometimes unpredictable interaction dynamics.

Human manipulation of objects—the essence of tool use—has remained largely

beyond neuroscientists’ reach. To better understand how the brain controls and

coordinates movements, we must look beyond unconstrained reaching movements

and study richer and more naturalistic behaviors that reveal the underlying control

principles.

Characterization of a dynamical system and its control requires exciting inputs

that perturb the dynamical modes [1, 2]. Hence, the application of external

perturbations has been the widely used method to interrogate the human motor

system [3–5]. Beyond controlled external perturbations, another way to excite the

motor system and reveal its dynamical modes is to expose the motor system to

interactions with the world as are naturally inherent in daily activities. For example,

previous studies examined more naturalistic tasks playing pool billiards [6, 7],

bouncing a ball on a paddle [8], or interacting with dynamically complex objects,

such as carrying a cup of coffee [9,10] or striking a target with a whip [11,12]. The

study of such naturalistic interactions suggested that most of the conventional

control objectives, such as maximizing smoothness [13], or minimizing effort [14],

are not sufficient to account for human behavior. When investigating a task

such as transporting a cup of coffee, more nuanced and object-centric objectives

seem to be in play that are concerned with stability and predictability of the

interactions [15, 16], and with minimizing the transient behavior of object that is

being controlled [14]. Expanding on these insights, this study aims to understand

complex interactions, with a focus on how embodiment affects higher-level control
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objectives, as well as the role of sensory feedback in the control process.

In interactions with the external world, physical properties of the body, especially

the mechanical impedance of the limbs, has been identified as critical [17,18]. Due

to its ability to store and dissipate mechanical energy, impedance affords stability

in the presence of sensorimotor delays [19] or when facing perturbations [5].

Impedance has been proposed as a dynamic primitive that interfaces the body with

the external world and shapes basic patterns of movements [20,21]. The controller

determines the zero-force trajectories in interactions with the environment, and

the observable movements arise as a consequence of this interaction. From a

physiological perspective, the central nervous system sets virtual or equilibrium-

point trajectories via tuning of the phasic and tonic stretch reflexes [22–24].

However, to create rich behavior, the computational principles that generate more

complex reference trajectories have remained elusive. This work sought to uncover

how the inherent mechanics of the body—the ‘embodied intelligence’—and the

characteristics of the neural controller influence one another in both the choice of

control objectives and the use of sensory feedback.

In computational motor neuroscience, several lines of research have pursued

the framework of optimal control as a model for the human motor controller [25].

The fundamental assumption in the optimal control framework is that the brain

selects movements to optimize a certain objective or cost function. The nature of

this objective function has been the focus of many studies and several candidates

have been proposed that are either based on kinematics [26–31], kinetics [32,33],

or energetics [34,35]. All of these objectives described human movements well in

their respective experimental contexts. However, these costs are not completely

independent and free to choose by the brain. Wong and colleagues [35] showed that
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kinematic smoothness arose as a by-product of physiological energy minimization,

without any explicit kinematics-related cost function. This finding suggests that

including more bio-fidelic features in the control model may achieve desired features

in human behavior in a less top-down dictated fashion. In this vein, mechanical

impedance of the body, with its ability to store and dissipate energy, plays a

critical role in defining the energetic landscape of the movements. Therefore, it is

expected that the energy buffering of impedance affects properties of the controller,

specifically the objective function.

The neural controller possesses feedback and feed-forward control pathways that

have been recognized as early as 1899 [36]. However, the exact interplay between

feed-forward and feedback control mechanisms and their dependency on different

task scenarios is still under debate [37,38]. While an essential element for many

accuracy-requiring task, for rapidly evolving physical interactions, such as carrying

a cup filled with sloshing coffee, the sensorimotor information transmission is too

slow to ensure successful feedback-based corrections. A more likely mechanism for

instantaneous interaction dynamics is mechanical impedance as it affords rapid

corrective responses without relying on neural signal transmission [19,39]. Indeed,

previous results on interaction with the cup-and-ball system already highlighted

that simple feed-forward models that included impedance reproduced behavior

well [10,14]. However, it remains unclear how feedback and feed-forward processes

interact with mechanical impedance in situations that require unplanned and

rapid, yet complex responses. This study will apply expected and unexpected

perturbations to examine the interplay of feed-forward and feedback processes in

interaction with impedance.

In overview, this study used the dynamically complex experimental task of
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transporting a simplified ‘cup of coffee’ to examine how interfacing the controller

with the body’s mechanical impedance affects the resulting behavior. To generate

rich and informative data, the experiment included predictable and unpredictable

perturbations in addition to the complex interaction forces generated through

the object’s internal dynamics. The optimal feedback control (OFC) framework

was used as the model for the neural controller [40]. Simulations scrutinized how

inclusion of impedance in the model changed its behavior under different objective

functions and involvement of sensory feedback. We hypothesized that mechanical

impedance was a critical component to accurately generate interactions with the

complex object (Hypothesis 1), that the specifics of the objective function become

less prominent due to the energy buffering of impedance (Hypothesis 2), and that,

for the same reasons, sensory feedback plays a subordinate role in this dynamically

rich behavior (Hypothesis 3).

2 Methods

2.1 Experiments

2.1.1 Participants

Eleven healthy right-handed individuals participated in the experiment (19-25

years old, 8 females). None of the participants had any history of neurological

disorders or biomechanical injuries in their upper limbs. Each subject provided

written consent to the experimental procedures prior to participation. All subjects

were given monetary compensation for their participation. The study was approved

by the Institutional Review Board of Northeastern University.
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Fig 1. Experimental apparatus and task design. A. Inspired by the daily activity of carrying a cup
of coffee, the simplified model of a cup with a ball inside mimicked the internal dynamics of this
complex object. The dynamics of this simplified cup-and-ball system was generated by the
linearizing the equations of motion of an equivalent cart-and-pendulum system, where the cart was
directly driven by the interaction force, Finter, applied by the hand to the cart. B. The linearized
cup-and-ball system was implemented in a virtual environment although still displayed as a 2D
semicircular cup with a ball (bob of the pendulum) sliding inside. Participants could directly
control the displayed cup via a robotic manipulandum; they received online haptic feedback about
the dynamics of the system. The task involved moving the cup on a horizontal line from the start to
the target box (32.5 cm distance) without losing the ball. C. To enhance the control demands, a
perturbation was applied to the cup at 60% of the total path length. The perturbation was an
impulse-like force of 20 ms duration and 20 N magnitude, applied in the opposite direction of the
cup movement. The location of the perturbation was visually displayed as a ‘speed bump’, but did
not propel the cup in the vertical direction. D. Experimental design: Four experimental conditions
were tested in 4 blocks, each with 100 trials: in Blocks 1 and 2 subjects interacted with the rigid
object (ball fixed to the cup); in Blocks 3 and 4 the full dynamics of the cup-and-ball system was
presented. Blocks 1 and 3 contained 95% unperturbed ‘null’ trials and 5% randomly interspersed
perturbation trials, acting as catch trials. Blocks 2 and 4 presented 95% perturbation trials, with
5% unperturbed trials as random catch trials. All catch trials were visually indistinguishable from
the rest of the trials in the same block.

2.1.2 Moving a Complex Object—a Cup with a Ball Rolling Inside

The experimental task was inspired by the daily activity of carrying a cup of coffee.

Unlike transporting a rigid object, carrying an object with internal degrees of

freedom creates nonlinear and potentially even chaotic interaction forces onto the

hand [9,16,41,42]. To examine such interactions, in previous work we simplified
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the ‘cup of coffee’ to a 2D semi-circular cup with a ball sliding inside and moving

on a horizontal line. Despite its simplicity, this model maintained the key elements

of underactuation, while providing mathematical tractability and virtual imple-

mentation of the task (Fig. 1A). This original cup-and-ball system was equivalent

to a 2D cart-and-pendulum system, where the bob of the suspended pendulum

corresponded to the ball, and the 2D arc of the cup was the circular path of the

pendular bob.

This study employed optimal feedback control (OFC [43], see section 2.2.1) as a

framework for the controller to explore the contributions of impedance, optimality

criteria, and sensory feedback. As this OFC was developed for linear systems, the

equations of motion of the cup-and-ball system were linearized around the ball’s

rest position at the bottom of the cup. This linearization led to the following

equations of motion:

(M +m)ẍ = −mlϕ̈+ Finter + Fpert (1)

lϕ̈ = −gϕ−Gẍ. (2)

where x and ϕ are the cup position and ball angle, respectively. Finter is the force

of the hand interacting with the cup, and Fpert is an external perturbation force.

The system parameters M = 3 kg and m = 0.3 kg are the cup and ball masses,

respectively. The pendulum length l = 0.5 m corresponds to the radius of the

cup; g = 9.81 m/s2 is the gravitational acceleration. G = 5 is the coupling term

between the cup and the ball dynamics. Since the physical limitations of the robot

did not allow simulating arbitrary object parameters, the value of G was set to be
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greater than 1 to make the ball more agile and responsive to cup accelerations,

while satisfying the constraints of the robot.

This linearized model was used both in the virtual implementation for the human

experiments, as well as in the simulations of different control models. While the

linearized model no longer exhibited chaotic behavior, it still presented considerable

challenges due to the underactuated degrees of freedom. A previous study demon-

strated that the linearized version of the cup-and-ball system demanded slightly

higher interaction forces as well as contained a more prohibitive anti-resonance

frequency, while other control challenges were similar to the nonlinear system [44].

Hence, the linearization was not expected to affect the purpose of this study.

Despite linearization, the virtual environment displayed the cup and ball as

in previous studies; the angle of the ball in the cup corresponded to the linear

state ϕ in (2). As a control condition for the cup-and-ball system, the internal

degree of freedom of the system, i.e., the ball, was constrained by fixing it to the

bottom of the cup. This rigid-object condition essentially reduced the behavior to

an unconstrained reaching movement with an increased hand mass. The inertia

of this rigid object was matched to equate the sum of the cup and ball masses in

the non-rigid system. The rigid object was displayed as an empty cup for visual

consistency, however its inertia matched the total mass of the cup and ball.

2.1.3 Experimental Apparatus

For both object types—rigid object and cup-and-ball—the dynamics was simulated

and rendered in a virtual environment, where participants interacted with the object

via a haptic robotic manipulandum (HapticMaster, FCS Control Systems, The

Netherlands [45]). Subjects received haptic feedback about the object dynamics
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and interaction forces via the robotic handle (Fig. 1B). The robot was admittance

controlled: the measured interaction force applied by the subjects on the robot

handle determined its acceleration by rearranging the cup’s equation of motion (1)

as:

arobot =
1

M +m
(Finter + Fball + Fpert) (3)

with Fball = −mlϕ̈. The desired acceleration of the robot in (3) was enforced by

its internal controller running at 4 kHz. Fball was updated at a median sampling

rate of 641 Hz (interquartile range 500-709 Hz) using the actual acceleration of

the robot and the ball’s equation of motion (2). The measured interaction force as

well as the kinematics of the movements were read out from the robot at the same

rate of 641 Hz.

The visual information about the object movement and the virtual environment,

i.e., the target boxes and the added perturbation bump, were displayed on a

vertical projection screen with a frame rate of 60Hz. The total latency of the

robotic interface and the visual projection, defined as the time difference between

the moment the robot’s handle moves until the time the movement is displayed

on the screen, was 33 ms±17 ms. To measure this latency, a single video camera

was used to simultaneously capture the robot’s handle and the displayed cup

position. This video was processed offline to digitize the positions of the robot

and the cup, and the time lag between the two position signals were calculated via

cross-correlation.
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2.1.4 Experimental Design and Procedure

Participants stood in front of the projection screen and grasped the handle of the

robotic manipulandum, by which they could control the displayed object on the

screen (Fig. 1B). They were instructed to move the object via the robot’s handle

along a horizontal line from a starting box (left) to a target box (right) displayed

on the screen. The physical distance between the centers of start and target box

was 32.5 cm. Each cup-and-ball trial started with the ball resting at the bottom

of the cup. If the ball angle surpassed the rim of the cup during the movement,

i.e., ϕ > ±45◦, the ball would ‘escape’, and the trial would be terminated as a

failed attempt. The failed trials were not repeated. A successful trial ended when

the cup was fully inside the target box and its speed fell below 5 mm/s. To avoid

lengthy adjustments to home in to the target, the start and target boxes were 30%

wider than the width of the cup, allowing ±5.3 mm tolerance. For the rigid-object

condition, there were no failures and all trials were considered successful.

To promote consistency across subjects, participants were instructed via feedback

to finish each trial within 1.4 s (±20%) for the rigid object, and 1.8 s (±20%)

for the cup-and-ball system. These movement times were chosen from preferred

durations measured in pilot experiments. The movement durations were displayed

at the end of each trial with the text color indicating whether the duration was

within the acceptable bound (green), too fast (yellow), or too slow (red). This

feedback was merely informative and violation of the desired movement time did

not lead to any explicit penalties, nor exclusion of the trial from analysis. Overall,

subjects very quickly learned and adhered to the suggested movement time (see

Behavioral Results).

In many trials, an external perturbation was applied that disturbed the move-
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ments (Fig. 1C). The perturbation was an impulsive force of magnitude Fpert =

20N, applied to the cup for 20 ms in the opposite direction of the movement,

without any effect in the vertical direction. This perturbation was applied at

a fixed location 60% into the movement distance towards the target. With the

exception of the catch trials (see below), the existence of the perturbation in a

trial was cued using a visual ‘speed bump’ (Fig. 1C). Therefore, the participants

were aware of its presence or absence before the trial began.

Each participant performed the task both with the rigid object and with the

cup-and-ball system in a total of 4 blocks of 100 trials each (Fig. 1D). The first

two blocks involved performing the task with the rigid object, blocks 3 and 4

presented the cup-and-ball system. Block 1 consisted of 95% unperturbed (‘null’)

trials and 5% perturbation trials (‘catch-perturbed’), randomly interspersed across

the block. Subjects were unaware of the perturbation prior to the trial onset

and there was no visual cue signaling the perturbation. Block 2 consisted of 95%

perturbed trials (speed bump shown) and 5% null trials (‘catch-null’), randomly

interspersed across the block. Unlike the ‘catch-perturbed’ trials in Block 1, the

’catch-null’ trials in Block 2 were also cued with a visually displayed ‘speed-bump’

on the way to the target like the remaining 95% of the trials in that block. Hence,

subjects expected a perturbation, but no force was applied. Blocks 3 and 4 were

the same as Blocks 1 and 2, respectively, except that subjects interacted with the

cup-and-ball system. The order of the blocks was the same for all participants.

Overall, each participant performed 400 trials. Each block lasted approximately

10-12 minutes, with sufficient break time given between the blocks. The experiment

lasted approximately 1 hour from beginning to end.
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2.1.5 Dependent Measures and Statistical Analysis of the Experimental

Data

A first analysis aimed to assess whether there were any improvements during each

of the four blocks. This was particularly relevant in the cup-and-ball condition that

posed more coordination challenges. Using movement time as an indicator, it was

determined as follows: trial onset was defined as the time when the cup velocity

exceeded 5 mm/s in direction of the target; the trial ended when the cup was

fully inside the target box and its speed fell below 5 mm/s. To evaluate whether

movement time changed over the course of practice, a Wilcoxon signed-rank test

(within-subject, N=11) compared the median trial duration of the first 25 and

last 25 trials of each block. This non-parametric test was appropriate as the

distributions of this variable did not meet the normality criterion.

To evaluate how subjects coped with the expected perturbations in the perturbed

trials, the interaction forces were examined. Inspection of the trials in both the

rigid-object and cup-and-ball trials showed that the force exhibited a characteristic

discontinuity immediately following the perturbations (see results). To quantify

this observed phenomenon in the different conditions, the force value at the

onset of the perturbation was compared against its value immediately after the

20 ms interval of the perturbation. For each participant, the difference values

of Fpre − Fpost were tested against zero using unpaired t-tests. These tests were

conducted separately for the rigid-object and the cup-and-ball conditions.

The cup velocity in the cup-and-ball condition rebounded after the perturbation.

In the data, this rebound started immediately after the end of the perturbation.

To quantify this feature, the cup’s peak acceleration following the perturbation

was identified in each trial. The peak values and the time of the peak to the end
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of the perturbation were analyzed.

2.2 Control Models

To identify the necessary elements in a control model for this task, several models

were developed and compared with the experimental behavior. All models were

based on the optimal feedback control framework as presented in [43]. To simulate

the experimental data, the control models needed to successfully transport the

cup-and-ball to the target without losing the ball. Two basic control models

were developed (Fig. 2): The first model included the dynamics of the object,

cup-and-ball and also the rigid object, together with a simplified inertial and

muscular dynamics of the arm (Fig. 2A, section 2.2.2). This basic OFC model was

contrasted against a second model that further included a simplified mechanical

impedance element (Fig. 2B, section 2.2.3). This constant impedance stood as

proxy for the compliant dynamics of the arm. These two models served as the

basis to study the interplay between impedance, cost functions, and corrections

via sensory feedback.

The starting hypothesis was that arm impedance critically affected the model

behavior, especially when additional external perturbations occurred. The two

basic model structures compared the simulated behavior with both the rigid and the

cup-and-ball object. These models included the most frequently used cost function

that minimized effort [32]. The second point of interest was the effect of the cost

function on behavior, once impedance was included. To address this question, the

two OFC models compared the behavior using the cost functions minimum-effort

with minimum-jerk (Fig. 2C, D, sections 2.2.4 and 2.2.5). The third analysis

evaluated the role of sensory feedback, especially when facing unexpected external
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A Minimum-Effort

C Minimum-Jerk
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FinterF

u
Sensory
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Motor
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u

x = u
...

Marm

F

Mref

kp ,kd

xref

B Minimum-Effort

Marm

u

xref = u
...

u

D Minimum-Jerk

Min-E Min-E

Min-J Min-J

Without Impedance With Impedance

Fig 2. A. The basic OFC model included a simplified muscle model. This muscle muscle model
produced force F according to the motor command u; minimizing u was a proxy for minimizing
neuromuscular effort. The interaction force was measured at the interface between the hand
mass Marm and the object. B. The second model included an impedance element (stiffness and
damping kp, kd) and an inertia, Mref , that was placed between the muscle model and the
hand/object. The inertial dynamics of Mref produced the reference trajectory xref under the
applied forces. C. The minimum-jerk variant of the OFC model did not include a muscle model;
instead, the controller outputted the jerk of the cup trajectory. Thus, minimizing u results in a
minimum-jerk trajectory that took into account the dynamics of the object. D. With impedance
in the model, the minimum-jerk variant of the OFC model prescribed the kinematics of the
reference trajectory for the impedance elements.

perturbations. This analysis focused on the catch trials and compared the basic

feedback control model with a variant that eliminated feedback.

2.2.1 Basics of Stochastic Optimal Feedback Control

The optimal feedback control (OFC) model that had been frequently used in move-

ment neuroscience represented the neural controller as a linear quadratic Gaussian

controller that dealt with additive and multiplicative sensory and motor noise [43].
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This optimal controller determined the control command u that minimized the

quadratic cost function:

J =
N−1∑
t=0

(
xT
t Qtxt + uT

t Rtut

)
+ xT

NQNxN , (4)

subject to:

Dynamics: xt+1 = Axt +B (I+ εt)ut + ξt,

Sensory feedback: yt = H (I+ ϵt)xt + ωt

(5)

where x is the state vector, and ξ and ε represent additive and multiplicative

(control-dependent) motor noise terms, respectively. The subscript t represents

the time-step, and N is the total number of time steps in the simulations. The

terms Rt and Qt in the objective function (4) are weights for effort and accuracy

costs, respectively. For all simulations, we used Rt = 1 for all t. Qt was separately

defined for each model, depending on the number of states in that model (see

below). The sensory feedback (yt) contained additive (ω) and multiplicative

(state-dependent; ϵ) sensory noise. The optimal control law was then calculated

as a feedback gain ut = L∗x̂, where the estimated state vector x̂ was calculated

based on the delayed feedback signal and the system dynamics (refer to [43] for

details on the implementation of sensory delay and the calculation of feedback

gains). For our simulations, the sensory delay was set to 50 ms. The motor noise

terms ξ and ε were zero mean Gaussian noise with the standard deviations of

10−4 and 1, respectively (with appropriate SI units). The covariance matrix for

the additive sensory noise was a diagonal matrix defined as ω = diag(10−5), and
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Table 1. List of model parameters that were kept the same in all models.

Parameter Description Value∗

d Sensory delay 0.05
ε Standard deviation of control-dependent process noise 1
ϵ Standard deviation of state-dependent sensory noise 0
ξ Standard deviation of additive process noise† 1× 10−4

ω Covariance matrix of additive sensory noise Diag(1× 10−5)
η Covariance matrix of internal noise in state estimator [43] Diag(1× 10−8)
n Number of time-steps to hold the object at target 50
τ Time constant of the first-order muscle dynamics 0.03

∗ In corresponding SI units and appropriate dimensions.
† Only for control-affected state (e.g., muscle force) and the perturbation state.

no state dependency was considered for the sensory noise (ϵ = 0; see Table 1 for

a full description of the parameter values). The following sections present each

model variant with its state vector and dynamic properties (matrices A, B and H

in equations 5).

2.2.2 Minimum Effort Model Without Impedance.

The conventional OFC model is often formulated to minimize the square of

neuromuscular effort [32,46]. To include a proxy for neuromuscular dynamics in

this model, the equations of motion of the object (1) were coupled with a first-order

muscle model [47] as shown in Fig. 2A:

(Marm +M +m)ẍ = −mlϕ̈+ F + Fpert

lϕ̈ = −gϕ−Gẍ.

τ Ḟ = u− F

(6)

where F is the muscle output force applied to the hand (Marm) and indirectly
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to the cup-and-ball (Fig. 2A). Note that the interaction force Finter in equation

1 was not the same as the muscle output force F , as the latter needed to be

calculated between the hand and the cup-and-ball system. To be consistent with

the experimentally measured values, the interaction force was calculated from (1)

given the simulated x and ϕ trajectories.

The perturbation force Fpert was an impulse force that acted on the cup-and-

ball system for a short time (20 ms) at the time the cup traveled 60% of the

target distance. For null trials, Fpert = 0 at all times. The numeric values of

system parameters in the simulations were: M = 3 kg, m = 0.3 kg l = 0.5 m,

g = 9.81 m/s2, G = 5, and τ = 30 ms. The hand mass (Marm) was a free parameter

in the model fitting procedures (see section 2.3).

Given the equations of motion, the model could be written in the standard

state-space form as follows:

x =
[
x, ϕ, ẋ, ϕ̇, F, Fpert

]T

A =



0 0 1 0 0 0

0 0 0 1 0 0

0 mg
α

0 0 1/α 1/α

0 −g
l
(1 + Gm

α
) 0 0 −G

lα
−G
lα

0 0 0 0 −1/τ 0

0 0 0 0 0 0


B = [0, 0, 0, 0, 1/τ, 0]T

H = I6×6.

(7)
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where α = m+ (M +Marm)−mG.

In Blocks 2 and 4, participants anticipated the impulsive perturbation. This

anticipation also had to be modeled within the OFC framework. Note that the

optimal controller’s behavior is only influenced by the state-space matrices A, B,

and H, as well as Q. Therefore, the perturbation needed to be included as a state

to embed such information in matrix A. Further note that the position-dependent

perturbation, as in the experiments, could not be modeled in a linear state-space

form; instead, the perturbation was implemented as time-dependent, and its timing

was manually adjusted so that the perturbation occurred at the right position in

the simulations. To implement this perturbation, the zero-dynamic state variable

Fpert was set to −20 N, but its corresponding terms A3,6 and A4,6 were zero when

the perturbation force was inactive. These state-space equations were subsequently

time-discretized using Euler integration with time-step δt =10 ms to be used in the

discrete-time optimal control problem of (4), (5). Following time-discretization,

the time-dependent matrix Qt was defined as:

Qt =

 Diag ([px, pb, pẋ, 0, 0, 0]) N − 50 < t ≤ N

Diag ([0, pb, 0, 0, 0, 0]) t ≤ N − 50
, (8)

with N denoting the total number of time steps. Note that the cost term (Qt)

penalized the cup position (x) and cup velocity (ẋ) in the last 50 time steps

(= 500 ms) of the movement to assure that the object came to rest at the target.

The parameters px and pẋ in the Qt matrix were the penalty values assigned to

the cup position and velocity (px = pẋ in the simulations). Further, to prevent

the ball from escaping during the simulations, the penalty for the ball angle

pb held for the entire movement duration. These free penalty parameters were
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obtained by fitting the models to the experimental data. The initial conditions

were x0 = [−32.5cm, 0, 0, 0, 0,−20N ]T and the total simulation time was set to

the average participant’s trial duration, plus 500 ms hold time.

2.2.3 Minimum Effort Model With Impedance

In human motor control, mechanical impedance of the body has often been

approximated by linear spring and damper elements. Fig. 2B illustrates how the

model of the arm was extended by an impedance. By adding a linear spring kp

and damper kd to the system, the equations of motion took the form:

(Marm +M +m)ẍ = −mlϕ̈+ kp(xref − x) + kd(ẋref − ẋ) + Fpert

lϕ̈ = −gϕ−Gẍ

τḞ = u− F

Mref ẍref = kp(x− xref ) + kd(ẋ− ẋref ) + F,

(9)

where xref represents the reference trajectory for the spring and damper system,

i.e., the point the muscle force F is applied (Fig. 2B). Note that the muscle

force in this case could only indirectly affect the cup-and-ball dynamics via the

impedance operator. The non-zero mass Mref in the equations was needed to avoid

a mathematical singularity (division by zero) when modeling the system. This

point mass can be considered as a lumped-parameter effective mass of the engaged

musculature. In this model, the parameters Marm, Mref , kp and kd were free

parameters found during the model fitting procedure. The standard state-space

representation of the model was:
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x =
[
x, ϕ, ẋ, ϕ̇, F, xref , ẋref , Fpert

]T

A =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−kp
α

mg
α

−kd
α

0 0 kp
α

kd
α

1
α

kpG

lα
−g
l
(1 + Gm

α
) kdG

lα
0 0 −kpG

lα
−kdG
lα

−G
lα

0 0 0 0 −1/τ 0 0 0

0 0 0 0 0 0 1 0

kp
Mref

0 kd
Mref

0 1 −kp
Mref

−kd
Mref

0

0 0 0 0 0 0 0 0


B = [0, 0, 0, 0, 1/τ, 0, 0, 0]T

H = I8×8.

(10)

The cost term Qt was defined as a 8× 8 diagonal matrix, with penalty terms

considered for the cup position and velocity, and the ball angle, as shown in (8).

2.2.4 Minimum Jerk Model Without Impedance

To study the effects of the objective function in our task, the objective of minimizing

effort was contrasted with the objective of maximizing kinematic smoothness.

Kinematic smoothness, frequently quantified by the time-derivative of acceleration

(jerk), is another widely-discussed objective function for human movements [26,

27, 29, 48]. It must be noted that forces from the ball made the cup trajectory

deviate from a pure minimum-jerk profile, i.e., it no longer exhibited a bell-shaped

maximally smooth velocity profile [49]. However, the OFC framework could include
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other cost terms, such as a penalty on the movement of the ball, to minimize jerk

while taking into account the dynamics of the task.

To minimize cup jerk in the model, the equations of motion had to be rewritten

to have the cup jerk either as an input or a state. This modification was required

to use the quadratic cost function (4)) to minimize the squared value of jerk. In

this model, the optimal feedback controller specified the third derivative of the cup

position as the control input ( d
dt
(ẍ) = u; Fig. 2C). To incorporate this equation

into the state-space model, the cup acceleration ẍ was included as an additional

state. Note that u directly prescribed the cup kinematics, i.e., the cup movement

was forced. Therefore, the muscle model no longer had an effect on the overall

system dynamics and was removed. Following this modification, the equations of

motion became:

...
x = u

lϕ̈ = −gϕ−Gẍ

(11)

Further, because the cup kinematic was fully prescribed by the controller, the

perturbation force Fpert did not affect the cup movement and was removed from

the equations. Therefore, the state-space representation of the dynamics became:

22/69



x =
[
x, ϕ, ẋ, ϕ̇, ẍ

]T

A =



0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 −g
l

0 0 −G
l

0 0 0 0 0


B = [0, 0, 0, 0, 1]T

H = I5×5.

(12)

As the control commands u in this OFC variant was directly defined as the

jerk of cup movement, the penalty term uT
t Rtut in the cost function (4) led to a

minimum jerk trajectory, while taking into account the dynamics of the ball and

the requirements of the task. For this model, the Qt matrix was defined as a 5× 5

diagonal matrix with the same ball and cup penalty terms as in (8).

2.2.5 Minimum Jerk Model With Impedance

For the minimum-jerk variant of the model that includes impedance (Fig. 2D),

the third derivative of the reference trajectory was prescribed as the control input,

i.e., d
dt
(ẍref) = u. Note that if the jerk of the cup trajectory was minimized, the

resulting movement would be the same as the minimum jerk OFC model without

impedance. Therefore, the acceleration of the reference trajectory was included as

a state in the state vector:

23/69



(Marm +M +m)ẍ = −mlϕ̈+ kp(xref − x) + kd(ẋref − ẋ) + Fpert

lϕ̈ = −gϕ−Gẍ

...
x ref = u,

(13)

which was written in a state-space form as:

x =
[
x, ϕ, ẋ, ϕ̇, xref , ẋref , ẍref , Fpert

]T

A =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−kp
α

mg
α

−kd
α

0 kp
α

kd
α

0 1
α

kpG

lα
−g
l
(1 + Gm

α
) kdG

lα
0 −kpG

lα
−kdG
lα

0 −G
lα

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


B = [0, 0, 0, 0, 0, 0, 1, 0]T

H = I8×8.

(14)

In both minimum-jerk variants (equations 12 and 14), the state penalties Qt

were defined similarly as in (8) with penalty terms for cup position and velocity,

as well as the ball angle.
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2.2.6 Simulating Movements with a Rigid Object

All four models described in (7), (10), (12), and (14), were developed based on the

cup-and-ball system. To simulate the movements with the rigid object, the states

regarding the ball movement (i.e., ϕ and ϕ̇) were removed from the state vector, as

well as the corresponding rows and columns from the matrices A, B, H, and Q.

2.2.7 Simulating Null, Perturbed, and Catch Trials

The experimental design tested four different trial types: null, perturbation, catch-

null, and catch-perturbed. For the perturbation trials and also the null trials,

prior to the onset of movement a visual cue (the speed bump or the absence of

a bump) informed the subjects about the presence or absence of a perturbation.

To incorporate this ‘knowledge’ in the simulations, the perturbation force Fpert

was included as a state in the state-space equations; by initializing simulations

with Fpert = −20 N, the knowledge about the time-dependent dynamics of the

perturbation was already incorporated in the control system via the time-dependent

A matrix. For the null trials, the perturbation state Fpert was set to zero. In this

case, the perturbation was neither ‘expected’ by the controller, nor did it occur.

For the catch trials, the simulations were performed in a two-step procedure

(Fig. 3). For catch-perturbed trials, a movement was first simulated as a null

trial and then the optimal control gains were obtained (L∗ in u = L∗x̂; Fig. 3A;

see [43]). In the second step, the movement was simulated based on the dynamics

of a perturbed trial, even though the control gains were obtained from the null

trial in the previous step (Fig. 3B). In this case, the controller was not prepared

for a perturbation, but a perturbation occurred. Conversely, for the catch-null

trials, the optimal control gains were first obtained by simulating a perturbed
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Nominal trial Catch trial

u*

Fpert

Fpert

Feed-forward model

Feedback model

Nominal control
trajectory

u*

u*

A

t Same trajectory

Same controllerL* L*

B

C

Fig 3. Simulating the catch-perturbed condition. A. In the nominal condition
without perturbation, a nominal optimal control model was created, which
expected no perturbation. B. To simulate the catch-perturbed trial, the same
controller L∗ that was unaware of the perturbation was used to simulate a trial
that faced a perturbation (the feedback-driven model). C. Only the nominal
control trajectory u∗ was supplied to the perturbed simulation in the feed-forward
model. The inverse procedure was used for catch-null trials, where a
perturbation-aware controller was used in a trial without perturbation.

trial, and then the same control gains were used to simulate a movement based

on the dynamics of a null trial. Here, the knowledge about the perturbation was

incorporated in calculating the control gain, but the perturbation did not occur.

2.2.8 Simulating Feed-Forward Control

For the feed-forward simulations, the control command u was first obtained from

the optimal feedback control applied to a given ‘nominal’ condition (e.g., for a null

trial, Fig. 3A), and then replayed in a feed-forward manner. This controller was

specifically used to simulate the catch conditions to assess how the control command

without sensory feedback could compensate for unexpected perturbations.
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Table 2. The list of free parameters for model fitting. The check marks indicate whether a
given parameter was present in a given model.

Parameter Bounds Min-effort Min-jerk
(lower, upper) No impedance With impedance No impedance With impedance

px (102, 109) ✓ ✓ ✓ ✓
pb (1, 105) ✓ ✓ ✓ ✓
Marm (kg) (0, 5) ✓ ✓ N/A ✓
kp (N/m) (0.1, 200) N/A ✓ N/A ✓
kd (N.s/m) (0.1, 200) N/A ✓ N/A ✓
Mref (kg) (0.05, 20) N/A ✓ N/A N/A

2.3 Model Fitting

Each control model contained free parameters that were used to fit the model

predictions to experimental data. The list of free parameters for each model and

their lower and upper bounds are summarized in Table 2. All other parameters,

such as for the noise terms, were fixed across all models (Table 1).

To fit each model, an off-line nonlinear optimization algorithm searched for the

parameter values that minimized the overall error of the fit (see below) across

all four experimental blocks. The models were fit to the data of each participant

separately. This optimization procedure consisted of two stages. In the first stage,

a global optimization process was implemented to find appropriate initial values

for the parameters to be used in a more refined optimization later. This stage was

implemented using the particle swarm optimization algorithm (MATLAB function

particleswarm, MATLAB 2021a) with a maximum of 300 iterations. In the second

stage, the obtained parameters were used as a starting point for a nonlinear gradient-

based optimization algorithm (sequential quadratic programming, implemented

with fmincon in MATLAB 2021a), to converge to the optimal values faster.
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2.4 Model Evaluation Against Experimental Data

To compare the simulated and experimental trajectories for model fitting, all

trajectories were first time-aligned based on the moment when the cup had

traveled 60% of the target distance; this coincided with the perturbation onset in

the perturbed trials. All experimental trajectories were re-sampled at 100 Hz to

match the sampling rate of simulated trajectories. To evaluate the performance

of each model, the root-mean-squared error (RMSE) between model and data

was obtained for five variables: position and velocity of the cup, angular position

and velocity of the ball, and the interaction force. For each variable, the model

prediction was compared to the data in the last 40 trials of each block (to focus

on stable performance). The resulting RMSE values were averaged and then

normalized as follows:

e□ =

1
n

∑n
i=1

√
1
N

∑N
t=0 (□

i
t −□sim

t )
2

1
n

∑n
i=1

√
1

N−1

∑N−1
t=0 (□i

t)
2

. (15)

where the symbol □ represents the variable of interest (x, ẋ, ϕ, ϕ̇, and Finter), i is

the trial number (out of n = 40 trials in the block), and t is the time step (with

total number of N steps that depended on the participant’s average trial duration).

The normalization intended to make the error comparable across different variables.

Then, the average of these normalized errors across all variables was taken as the

single evaluation measure that represented the overall modeling error for a given

block and subject:

e =
1

5

(
ex + eẋ + eϕ + eϕ̇ + eFinter

)
. (16)
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For the rigid-object condition, eϕ and eϕ̇ were removed.

2.5 Statistical Analysis of the Modeling Results

The overall modeling error in (16) was used to statistically compare the selected

models. The goal was to evaluate whether the model variants resulted in statistically

different predictions quantified by the model-fitting errors.

To evaluate the effect of impedance on the model behavior (Hypothesis 1),

a three-way repeated-measures ANOVA was performed. The three factors were

model type (with versus without impedance), object type (rigid object versus

cup-and-ball), and perturbation type (null versus perturbed). The next analysis

on the effects of the cost function applied a four-way repeated-measures ANOVA

(Hypothesis 2). The factors were model type, object type, and perturbation type as

before, as well as the cost function (minimum-effort versus minimum-jerk). Catch

trials were excluded for these two analyses. Finally, to assess the effects of feedback

on performance, another four-way repeated-measures ANOVA was used with the

factor feedback condition (feedback versus feed-forward) instead of cost function

(Hypothesis 3). Only catch trials were used in the last analysis. To disentangle the

interactions, posthoc comparisons with Tukey-Kramer corrections were applied.

All statistical tests were performed in Matlab 2021a, using the ANOVA tools and

multcompare function (The Mathworks, Natick, MA).

As different models had different number of parameters, the Bayesian Infor-

mation Criterion (BIC) was applied to each model. BIC evaluates the model

performance based on the data fitting error, while also compensating for the

number of free parameters to avoid over-fitting [50]. A BIC difference of greater

than 4.6 (a Bayes factor of greater than 10) was considered as strong evidence in
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favor of the model with the lower BIC value [51]:

BIC = n log
( e

n

)
+ k log(n), (17)

where n is the number of data points, k is the number of free parameters in the

model, and e is the performance error calculated in (16).

3 Results

3.1 Behavioral Results

Participants were largely successful in all task conditions. When transporting the

cup-and-ball in Blocks 3 and 4, they only lost the ball in 56 trials out of the total

of 2200 trials in this condition. The median success rates across participants, i.e.,

percentage of trials in which the ball was not lost, were 99% and 97% in Blocks 3

and 4, respectively.

To probe whether there were improvements due to practice within each block,

trial durations across the 100 trials of each block were examined. The median

movement time between the first 25 and last 25 trials of each block were compared

using Wilcoxon signed rank test; failed trials and catch trials were excluded. The

median movement time decreased with practice only in Block 3 (unperturbed

cup-and-ball condition, see Table 3). No significant changes in movement times

were observed in other blocks. Note the significantly higher movement times in

Blocks 3 and 4 when the ball was sliding inside the cup; this observation gave first

evidence for the higher demands when transporting the cup with the moving ball.

Figure 4 summarizes average trajectories of cup and ball and interaction forces
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Table 3. Trial durations in the four experimental blocks. Median trial durations
across all participants are reported.

Block All trials First 25 trials Last 25 trials Wilcoxon signed rank test

1 1.43±0.24 s 1.45±0.44 s 1.41±0.25 s W = 40, p = 0.57
2 1.43±0.20 s 1.45±0.23 s 1.40±0.24 s W = 50, p = 0.15
3 1.91±0.34 s 1.97±0.37 s 1.86±0.25 s W = 95, p = 0.019
4 1.81±0.27 s 1.83±0.23 s 1.80±0.22 s W = 43, p = 0.41

in all conditions; catch and failed trials were excluded. Panels A-E show one

example participant’s behavior, and panels F-J present averages across all partici-

pants. The other individual participants’ data are provided in the Supplementary

Material, Figures S-2 through S-45. As expected, in the rigid object condition of

Blocks 1 and 2, participants moved the object to the target with kinematics that

resembled those seen in free reaching, i.e., a smooth bell-shaped velocity profile

(Fig. 4A, B, cyan trajectories). With the introduction of the ball dynamics in

Blocks 3 and 4, new movement profiles emerged that were distinctively different

from those in the rigid object condition. Specifically, the cup velocity (Fig. 4B,

light brown trajectories) exhibited a ‘plateau’, instead of the prominent peak

in the rigid object condition. These features were robustly observed across all

participants, as indicated by the narrow standard deviation bands in Fig. 4F-J.

Prior to the onset of the predictable perturbations in Blocks 2 and 4, participants’

movement patterns were similar to those in the unperturbed trials, both with the

rigid object and with the cup-and-ball system (Fig. 4, darker brown trajectories).

Until arriving at the perturbation location, participants continued to move with a

velocity profile that showed a single prominent peak in the rigid object case, and

a plateau in the cup-and-ball condition (Fig. 4B, G). In both conditions, the

impulsive resistive force caused a sudden drop in the cup velocity; in the cup-and-
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Fig 4. A-E. Example participant’s trajectories with the rigid object and the cup-and-ball system,
under free and perturbed conditions. Different color lines show the mean ± one standard deviation of
the corresponding trajectories across trials for each block (excluding the catch trials). The inset in
panel C highlights the detailed features of the interaction force at the perturbation in the cup-and-ball
condition. The shaded region is the 20 ms interval in which the perturbation was applied. F-J.
Summary of all participants’ trajectories. Mean ± one standard deviation of the average trajectories
from all participants’ are shown.
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ball condition, the cup velocity rebounded after the perturbation (Fig. 4B, G), but

this rebound was absent in the rigid-object condition. Further, with both objects,

the interaction force showed a prominent spike (Fig. 4C, H). The interaction

force exhibited a ‘discontinuity’ at the time of perturbation as highlighted in the

zoomed-in insets in Fig. 4C, H; the interaction force right after the perturbation

was consistently larger than its value at the onset of perturbation as the inset

highlights. Averaged across participants, this increase was 0.99±0.72 N with the

rigid object (t(10) = 4.553, p = 1.05×10−3) and 1.52±0.69 N with the cup-and-ball

system (t(10) = 7.323, p = 2.53× 10−5).

3.2 Modeling the Behavior

3.2.1 The Effects of Impedance

Figure 5A, B illustrates the simulation results from the standard minimum-effort

model with and without impedance, together with the experimental data for one

participant. For the rigid-object condition (Fig. 5A), both models captured the

qualitative patterns of the human movements in both perturbed and unperturbed

trials. Specifically, both models produced the bell-shaped velocity profile and the

velocity drop without rebound after the perturbation. However, the models differed

in capturing the features of the interaction force around the perturbation. In the

perturbed trials, the data showed an increase in the force level from before to after

the perturbation (average across participants: 0.99± 0.72 N). While such sudden

increase was reproduced by the model that included impedance (0.38±0.33 N), the

model without impedance failed to account for this behavior and instead showed a

decrease in force (−0.15± 0.13 N).
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Fig 5. Comparison of the responses of the minimum-effort models against the human data. A.
Rigid object condition. B. Cup-and-ball condition. Interaction forces and positions and velocities of
the cup and the ball from the same exemplary participant #11 as in Fig. 4 are shown. The shaded
bands around the mean trajectories show one standard deviation. The two OFC responses (with and
without impedance) are overlayed on the human data. C. Modeling error quantified by the mean of
the normalized root-mean-squared error of all trajectories. Each pair of dots connected by a line
represents the modeling of one participant. The black line belongs to participant #11.

The inclusion of the ball dynamics separated the two models’ behavior further

(Fig. 5B). Without impedance, the qualitative characteristics of the simulated
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movement deviated from the human data more distinctively. In contrast, with

impedance, the OFC model modulated the interaction force and consequently the

cup velocity less, leading to qualitatively similar behavior as seen in the human

data. Similar to the rigid-object condition, the inclusion of impedance allowed

the model to reproduce the discontinuous increase in interaction force from before

to after the perturbation; Averaged across participants, the simulated interaction

force increased by 0.81± 0.54 N (human data: 1.52± 0.69 N). This feature could

not be captured in the absence of impedance, and the interaction force decreased

by −0.15 ± 0.08 N in the simulation. Another salient behavioral feature in the

perturbed cup-and-ball condition was the smooth rebound of the cup velocity after

the perturbation. In the face of perturbations, both models closely replicated the

drop and rebound of the cup velocity as well as the spike in interaction force.

The overall error between the simulated and measured behavior was quantified

using an aggregate root-mean-square error of fit that took into account the trajec-

tories of all cup and ball states and the interaction force (Fig. 5C). In both null

and perturbed conditions, this overall modeling error was smaller when impedance

was included in the model. A three-way repeated-measures ANOVA revealed

statistically significant two-way and three-way interactions and main effects. The

full ANOVA results are presented in Table S-1. Because the goal was to compare

the modeling error with and without impedance in each test condition, planned

pair-wise comparisons were made within each block using Tukey-Kramer tests.

Results indicated statistically significant differences between the two models in all

four condition blocks (p = 0.0016, p = 0.0038, p = 7.68× 10−5 and p = 0.013 for

Blocks 1 to 4, respectively). The inclusion of impedance resulted in significantly

better fit to the data in all conditions.
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The models involved a number of parameters that were fitted to individual

participants’ data and are summarized in Fig. 6, and Table 4. Results of the

BIC analyses showed that the inclusion of impedance in the model reduced BIC

for all participants with a difference of ∆BIC > 61, suggesting that the model

with impedance proved to be a better underlying modeling structure (see details

in Fig. S-1 in the Supplementary Material). These modeling results highlighted

the importance of mechanical impedance for the overall system behavior.

3.2.2 The Effects of the Objective Function

For the above analyses, both models included minimization of effort as their

objective function, consistent with many previous studies [32,46]. The following

comparisons tested the influence of the objective function on the models’ behavior

in the context of interactions with a complex object.

In interaction with the rigid object (Fig. 7A), all four model variants (with or

without impedance, minimizing jerk or minimizing effort) produced the expected

Table 4. Mean±standard deviation of the identified parameters, averaged across
participants. Impedance’s stiffness (kp) and damping (kd), arm mass (Marm),
reference trajectory’s inertia (Mref ), and penalties on cup and ball states
(log10(pb), log10(px)) are reported. N/A indicates that the parameter was not
included in the model.

Parameter Min-effort Min-jerk
No impedance With impedance No impedance With impedance

kp (N/m) N/A 49.47± 12.08 N/A 58.92± 47.49
kd (N.s/m) N/A 9.26± 3.45 N/A 18.04± 2.96
Marm (kg) 3.28± 1.96 0.79± 0.23 N/A 0.61± 0.14
Mref (kg) N/A 17.46± 2.39 N/A N/A
log10(px) 6.45± 0.22 7.28± 0.26 6.17± 0.41 6.34± 0.50
log10(pb) 2.08± 0.31 1.31± 1.16 1.91± 0.30 1.44± 0.80
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Fig 6. Model parameters fitted to each participant’s data. Impedance’s stiffness (kp)
and damping (kd), arm mass (Marm), reference trajectory’s inertia (Mref ), and penalties
on cup and ball states (log10(px), log10(pb)) are identified. See Table 4 for the average
values.

smooth bell-shaped velocity profile. All these models, with exception of minimum-

jerk without impedance, performed qualitatively similar to the human data when

facing the perturbations in Block 2 (Fig. 7B). Note that the minimum-jerk model

directly prescribed the cup kinematics and, by design, the perturbation forces in

Block 2 did not affect the cup movement and did not produce the sudden velocity

drop (dashed red line in Fig. 7B).
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In contrast, in the cup-and-ball condition, the two models without impedance

produced distinct movement profiles (Fig. 7C). The minimum-jerk model variant

generated a single-peaked velocity profile, as opposed to the pronounced double-

peaked profile of the minimum-effort variant (compare the solid and dashed red lines

in Fig. 7C). However, when impedance was included, the two variants produced

very similar movement patterns. Similar observations hold in the perturbed

cup-and-ball condition (Fig. 7D): without impedance, the minimum-effort and

minimum-jerk variants behaved distinctively from each other (solid and dashed red

lines), while the two cost functions resulted in similar behavior when impedance

was present in the model (solid and dashed blue lines).

These qualitative similarities and differences were clearly reflected in the quan-

titative error Fig. 7E-F. Without impedance, the modeling errors from the

minimum-effort and minimum-jerk variants were different in all four test condi-

tions. However, with impedance, the two objective functions resulted in comparable

modeling errors. A four-way repeated-measured ANOVA compared the modeling

error with the factors model type (with versus without impedance), objective

function (minimum-effort versus minimum-jerk), object type (rigid object versus

cup-and-ball), and perturbation type (unperturbed versus perturbed). Results

revealed that the model type produced a strong main effect (F (10) = 1069.1,

p = 1.69× 10−11), while the cost function did not yield a significant main effect

F (10) = 0.010, p = 0.920). Only the three-way and four-way interactions that in-

volved model type and cost function showed statistical significance (F (10) ≥ 17.13,

p ≤ 0.002). The full ANOVA results are presented in Table S-2. Planned

pairwise comparisons within each test condition (Fig. 7E-H) showed that the

error from the two model variants without impedance were different in all four
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Fig 7. Effect of the objective function on model behavior. The minimum-effort and minimum-jerk
criteria are compared in models with and without impedance. Panels A-D show the simulated cup
trajectories overlaid on one example participant’s data (same participant #11 as in Fig. 4). Panels
E-H show quantitative comparisons of the overall modeling error across all participants. The
asterisk ∗ indicates statistically significant differences (p < 0.05) between the minimum-effort and
minimum-jerk models, and n.s. (not significant) indicates no statistically significant differences
(p > 0.05). Each thin line represents a participant; the solid black line belong to the shown
participant.

blocks (p ≤ 0.0132). However, with impedance, the two model variants were not

statistically distinguishable in any of the blocks (p ≥ 0.195).
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3.2.3 The Effects of Sensory Feedback

To investigate the role of sensory feedback on the models’ behavior, catch trials

were analyzed. Note that catch trials were visually identical to the rest trials within

the same block and there was no indication that would inform the participants

about the change in the perturbation condition. These trials afforded separating

the effects of pre-planning from a feedback-driven response in the face of the

unexpected event.

Figure 8A-D illustrates the experimental and simulation results for both types

of catch trials. Only the standard minimum-effort models were analyzed here.

When sensory feedback was present, the model without impedance (solid red lines)

could drive the rigid object to the target and stop there, despite the unexpected

perturbation in the catch-perturbed trial (Fig. 8A). When sensory feedback was

removed from the model (dashed red lines), the simulated cup velocity no longer

reached zero velocity at the end of the trial; the cup stopped and moved back in

the opposite direction with negative velocity by the end of the trial (Fig. 8A).

Interestingly, by introducing impedance, the feedback and feed-forward control

policies became similar (respectively, solid and dashed blue lines in Fig. 8A). Both

models could recover from the unexpected perturbation and successfully transport

the rigid object to the target and stop there. Similar behavior was observed in the

catch-null trials (Fig. 8B), where the perturbation was unexpectedly removed:

without impedance, the feed-forward model could not cope with the unexpected

scenario. In contrast, the inclusion of impedance enabled both models, with or

without sensory feedback, to successfully finish the task. The inclusion of the

ball enhanced these effects, and the undershoot and overshoot of the cup velocity

with the feed-forward were even more pronounced in the absence of impedance
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Fig 8. Catch trials to assess the effects of sensory feedback on model performance. In
catch-perturbed trials, participants unexpectedly experienced a perturbation in a block where 95%
were null trials. In catch-null trials the visual cue (Speed bump) alerted subjects to the upcoming
perturbation as in most other trials, but no perturbation was applied. A-D. Experimental and
simulated results for catch trials: cyan and light brown bands represent one participant’s data for
rigid-object and cup-and-ball conditions, respectively (same participant #11 as in Fig. 4). Solid
lines represent the feedback model without (red) and with (blue) impedance; dashed lines represent
the feed-forward replay of the nominal control trajectories in the catch trial. The inset in C
magnifies the trajectories around the perturbation. The shaded region corresponds to 50 ms
simulated sensory delay, and the arrows points to the moment of maximum cup acceleration. All
time series of experimental data and simulations were aligned based on the moment when the cup
arrived at the onset of perturbations, at 60% distance towards the target. E-H Overall error
between the human data and simulation. Asterisk ∗ indicates statistically significant differences
(p < 0.05) between the feedback and feed-forward models; ‘n.s.’ indicates not significant (p > 0.05).
Each thin line represents one participant; the solid black line belong to the participant shown above.
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(Fig. 8C, D). Both variants with impedance, however, were successful at the task.

The rebound in the cup velocity following the perturbation (Fig. 8C) dis-

tinguished the models even further. Without impedance, the velocity rebound

deviated from the data even when the control model utilized sensory feedback

(highlighted in the inset of (Fig. 8C). In the data, the cup acceleration peaked

immediately (within 5 ms) after the perturbation ended. Across participants,

the average cup acceleration before perturbation onset was 0.15± 0.09 m/s2 and

rose to 1.06± 0.27 m/s2 immediately (within 5 ms) after the perturbation. This

instantaneous behavior was observed in all participants. However, in the absence

of impedance the simulated cup acceleration did not exhibit this instantaneous rise;

cup acceleration was 0.098± 0.091 m/s2 and 0.072± 0.075 m/s2, before and after

perturbation, respectively. In this case, the controller received sensory feedback

with a 50 ms delay, and could only respond to the perturbation after processing

the delayed information. Consequently, the cup acceleration took 152± 8 ms to

rise to a value that was comparable to the measured peak acceleration, i.e., within

one standard deviation from the mean of the data. On the other hand, the model

with impedance reproduced this instantaneous response after the perturbation,

and cup acceleration peaked immediately following the perturbation and reached

0.71±0.30 m/s2 (from 0.17±0.06 m/s2 at perturbation onset). Note, that although

the feed-forward model with impedance had an extra inertia parameter (Mref)

compared to the model with no impedance, this additional inertia cannot account

for the rebound of cup velocity and acceleration after the perturbation (Fig. 8C).

Such immediate rebound is achieved through a mechanism that can store and

release energy in the face of a perturbation, which in our case is the stiffness

element in the model.
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To quantify and compare the error between different models, only the trajectories

after the perturbation were taken into account because the feedback and feed-

forward responses were identical before the perturbation. As Fig. 8E-H shows,

without impedance, the feed-forward variant consistently under-performed the

feedback-driven one in all four conditions. However, the error from the feedback and

feed-forward variants of the models were comparable in the presence of impedance.

A four-way repeated-measures ANOVA was used to analyze the modeling error; the

four factors were model type (with versus without impedance), feedback structure

(feedback versus feed-forward), object type (rigid object versus cup-and-ball), and

perturbation type (catch-null versus catch-perturbed). All two-, three- and four-

way interactions that involved both model type and feedback structure revealed

statistical significance (F (10) ≥ 6.97, p ≤ 0.0247). Further, both model type and

feedback structure showed strong main effects (F (10) ≥ 99.1, p ≤ 1.66×10−6). The

ANOVA results are shown in the Supplementary Materials. Following these results,

planned pairwise caparisons of the model variants within each block (Fig. 8E-H)

showed that the feed-forward model without impedance under-performed the

feedback one in all test conditions with statistical significance (p ≤ 5.61× 10−3).

However, the two variants of the model with impedance were not statistically

different in Blocks 2, 3 and 4 (p ≥ 0.084); only in Block 1, the feedback model

performed better that the feed-forward variant (p = 5.80× 10−4).

4 Discussion

To date, numerous studies have examined the roles of the body mechanics, optimal-

ity principles, and sensory feedback for the control of voluntary goal-directed move-
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ments. Typically, the experiments were carefully designed to isolate and explore the

concept in question, e.g., the cost functions [25,52], mechanical impedance [5,53], or

the interaction between feedback and feed-forward pathways [54,55]. The interplay

between these critical elements, however, has received less attention, with only few

exceptions. For instance, the interplay between sensory feedback and impedance

was studied in an isometric holding task [37] and in a postural control task [56].

Common to these studies are the simplified experimental tasks to generate clear

data, e.g., the feed-forward command could safely be assumed constant in the cited

articles. However, such simplified tasks may not be rich enough to reveal the full

relation between the constituent elements of motor control. Hence, the goal of this

work was to study the interplay between body mechanics, optimality criteria, and

sensory feedback in an experimental assay in which humans interacted with an

object that introduced internal dynamics with an underactuated degree of freedom.

Such movement task posed a new set of control challenges that afforded a more

intricate view into control processes.

4.1 Contributions of Impedance

The body and its mechanics (‘embodiment’) plays a significant role in determining

control, especially in more complex movements in interaction with objects and the

environment. Thus, a model’s prediction about the brain’s role in motor control

critically depends on the neuromechanical details included in the control model [57].

To address the crucial interplay of top-down control and body dynamics, this study

examined OFC’s predicted behavior when the model for the body was extended

with a simple representation of its inherent dynamics, mechanical impedance. To

evaluate the contribution of impedance, different variants of OFC were developed
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and compared.

Comparison of human kinematics in object interactions with the corresponding

model simulations showed that the OFC model without impedance failed to

reproduce several salient features in human performance. Several results highlighted

the superior performance of the model that included impedance. First, the model

with impedance produced kinematic profiles that deviated significantly less from

the experimental trajectories, as quantified by the aggregate RMS error (Fig. 5C).

Second, in the absence of impedance the simulations could not reproduce the

sudden increase in the interaction force immediately following the perturbation,

which was a robust feature in the human data. Third, without impedance the

model’s response showed a noticeable delay to an unexpected perturbation due to

the 50-ms sensory delay in the model (Fig. 8C). No such delay was observed in

the human data. However, when an impedance element was included, the model

captured the subjects’ overall movement profiles to a significantly greater degree.

The impedance element acted as an energy buffer, allowing the model to capture

the discontinuity in the interaction forces following a perturbation. Impedance

also allowed the model to replicate the instantaneous response to unexpected

perturbations.

The two phenomena at the perturbation, the change in interaction force and

acceleration post-perturbation, occurred at a very fast timescale (< 20 ms). Neither

voluntary, nor involuntary neural responses could be generated at such timescales.

For comparison, the fastest stretch reflex in upper extremities only starts 20-50 ms

after perturbation onset [58]. These observations imply that the instantaneous

responses should be attributed to the biomechanics of the arm. Within the

20 ms duration of the impulsive perturbation force, the cup velocity decreased
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significantly, while the cup position and also the position and velocity of the

impedance’s ‘zero-force trajectory’ changed only negligibly. The drop in the cup’s

velocity caused a sudden increase in the damping force and, ultimately, an increase

in the interaction force. The same instantaneous rise in interaction force was

also the reason for the immediate rebound of cup velocity after the unexpected

perturbation. The model without impedance lacked this mechanical contribution,

and the velocity could accelerate and rebound only after processing the delayed

feedback to command an increase in muscle force.

The impedance included in the model consisted of a pair of linear and constant

spring and damper elements. Despite this simple design, the model clearly outper-

formed the one without impedance. In reality, however, nonlinear muscle, joint, and

inter-limb mechanics contribute to the effective impedance of the limb, resulting in

stiffness values that vary with posture [24,59] or with the evolving movement [60,61].

Accurate representation of mechanical impedance is crucial to ‘peel back’ the me-

chanics of the body and reveal the descending commands [62–65]. In addition to the

passive contributions of the musculoskeletal properties, task-dependent modulation

of stiffness has also been proposed as a means of control [5, 66, 67]. The effects

of time-varying modulation of impedance have been studied in musculoskeletal

simulations [56, 68–70] and in robot control [71]. Results suggested that the brain

may indeed use impedance-modulation as another control mechanism. However, it

remains a challenge to parse the contributions of active stiffness modulation from

the variations caused by the passive mechanics of the body, due to the persistent

challenges of estimating time-varying impedance in vivo [72]. To avoid unnecessary

complications and assumptions, the simple time-invariant model was adopted that

still described the human data remarkably well.
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The behavior of the models critically depended on the parameter values used

in the simulations. Although the models were highly simplified compared to the

human physiology, the lumped parameter values can be discussed in relation to

biomechanical properties of the body. The identified impedance parameters were

within the range of previously reported values for the end-point (hand) impedance,

although the range reported in the literature spans one order of magnitude. The

estimated end-point stiffness in the literature ranged from 40 N/m [73, 74] to

200 N/m [10] during rhythmic movements, and > 250 N/m [59,75] and > 60 N/m

[76] in isometric holding tasks where short-range stiffness was a major contributor.

In comparison, the end-point stiffness identified via matching the model to the

experimental data in our work was 49± 12 N/m and 59± 47 N/m in the minimum-

effort and minimum-jerk models, respectively. Likewise, our estimated damping

was 9.3± 3.4 N.s/m and 18± 3 N.s/m in the two models, which were within the

range of 10− 50 N.s/m reported in [10,73–75].

In the models that included impedance, the mass of the arm Marm repre-

sented the effective inertia after the impedance element; it was estimated to be

0.78± 0.23 kg (minimum-effort) and 0.61± 0.14 kg (minimum-jerk), which was

slightly higher than the mass of the hand (on average 0.5-0.6% of body mass [77],

approximately 0.3-0.55 kg). This consistency can be explained by noting that

forearm and upper arm partly contributed to the effective post-impedance inertia.

In the absence of impedance, the identified Marmwas3.3± 2.0 kg which was close

to the total mass of the arm (4.2-4.7% of body mass [77], 2.5-4.3 kg). The lumped

parameter Mref = 17± 2 kg obtained when fitting the data was much larger than

that of the arm. This could be physiologically realistic because this parameter

represented the effective inertia of all force-producing machinery in the body. This
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effective inertia might include the contributions of trunk and even leg muscles, as

it is not unreasonable to assume that core muscles also engage in responding to

perturbations, hence, leading to a relatively larger inertia value for Mref .

Not only did the added mechanical impedance replicate human movements

much better, it also provided further important insights about two cornerstones

of optimal feedback control: 1) Detailed features of the cost function became less

important when impedance was added. 2) Sensory feedback for the processing of

error and correction became less critical. These two issues will be discussed next.

4.2 Contributions of the Cost Function

To answer why a certain movement pattern is chosen over possible alternatives,

the cornerstone of optimal control theory is that the controller, or the brain,

seeks to minimize a certain objective function. In movement neuroscience, there

has been considerable debate which objective function the brain is trying to

optimize (see [25] for a review). A multitude of objective functions have been

proposed, ranging from the kinematics-based objectives (e.g., minimum jerk [26,29],

crackle [27], and acceleration [28]), to the kinetics-based ones (e.g., minimum torque

change [33] and muscle effort [30, 32]), to the minimum variance cost [31], and

the physiological energy expenditure [34, 35]. All of these objectives were able

to describe human movements reasonably well in their respective experimental

contexts. Support for any of these objectives typically involved comparing them

against other objectives for a given task and then choosing the one that better

matched the data. In this paper, the comparisons made between the two OFC

variants with two different objective functions, effort and jerk, also displayed

distinct differences in the movement patterns. Strikingly though, when impedance
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was included in the controller, no quantifiable differences were observed, and both

cost functions replicated the human behavior equally well. This finding suggests

that, when OFC included even minimal biomechanical features, details of the

objective function may become inconsequential. In the same spirit, Diedrichsen

and colleagues have shown that under the assumption of signal-dependent noise,

the objective of reducing effort is equivalent to reducing end-point variance [46].

Similarly, Wong and colleagues [35] showed that smooth movements are more

energy efficient due to the cost of calcium ion transport in the cell membrane.

Here, it is shown that the physiologically realistic element of arm impedance masks

distinctions between effort and smoothness. One important implication is that

the underlying control principles of the brain may be fundamentally unobservable

due to the filtering effects of the body mechanics. However, it needs to be kept in

mind that this finding was obtained in the context of interactions with a complex

object. To what degree this blurring of details holds for other tasks requires more

investigation.

4.3 Contributions of Sensory Feedback

Features of feed-forward (pre-planned) and feedback (online corrections) control

mechanisms are intertwined in coordinated human movement. Following Wood-

worth in 1899, numerous authors have distinguished a ballistic (feed-forward) and

a homing-in phase followed by error corrections (feedback) in simple pointing

movements [36,78]. In more recent years, Crevecoeur and colleagues [37] argued

that feedback control was necessary to complement a feed-forward command to

replicate the human response to perturbations in an isometric task. Conversely,

Yeo and colleagues showed that when sensory information was uncertain, human
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movements could not be explained by feedback control alone and feed-forward

pathways were necessary [38]. Even in tasks that heavily rely on continuous sen-

sory information, such as balancing a stick on the fingertip, there are compelling

arguments for intermittent episodes of feed-forward predictive control [79].

This study used a dynamically complex task where the underactuated object

created perturbations depending on the hand’s actions. In addition to expected

perturbations, unexpected perturbations in the catch trials were given to identify

the role of sensory feedback. The simulations of the catch trials without an

impedance element showed that the feed-forward replay of the OFC’s control

command was unable to cope with the perturbations or their unexpected absence.

This behavior did not match the subjects’ behavior (Fig. 8). On the other hand,

the feedback-driven OFC model achieved a better fit to the data with significantly

smaller model error. Based on these results, one may readily conclude that a

feedback loop is necessary. However, when the model included impedance, both the

feedback and feed-forward variants replicated the experimental data equally well.

These findings showed that mechanical effects may have intricate contributions to

coping with complex events. Even a task that involves underactuated dynamics

and challenging requirements, e.g., responding to the disturbance without ‘spilling

the coffee’, may be achieved by a feed-forward control scheme, as long as it is

mediated by body mechanics.

It must be noted that our results do not simply provide support for either

feed-forward or feedback control. Instead, the key insight from these results is

that, under biomechanically more plausible assumptions, the distinction between

predictive feed-forward and sensory-driven feedback control may become less

apparent. Similar effects were reported previously in a simple reaching task by
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Berret and Jean [69], who showed that attenuation of task-dependent errors could

be achieved by a feed-forward tuning of the arm impedance. It should also be noted

that these results must be interpreted in the context of the chosen experimental

task. It is obvious that large enough and long enough perturbations can disrupt the

movement to a degree that requires sensory-driven corrections, both in terms of long-

latency reflexes and voluntary responses. Indeed, Crevecoeur and colleagues [37]

showed that optimal feedback corrections were necessary to complement mechanical

impedance after large perturbations in a holding task. However, given that arm

impedance is nonlinear, e.g., exhibits short-range stiffness [80, 81], and that it

changes with postural configuration [82] and movement [60,61], great care is needed

when searching for the ‘control structure’ using perturbations. New computational

techniques that simultaneously model feedback and feed-forward pathways as

developed in a recent study may provide new insights [56].

4.4 Role of Impedance: Two Perspectives

From a mathematical perspective, the impedance element in the model introduced

three additional states to the dynamics of the system that the optimal feedback

controller had to address. However, unlike inertial mechanics that can also increase

the number of states, e.g., in multi-segment arm models, impedance endows the

system with potential energy storage and dissipation properties. These properties

could not be achieved with inertial mechanics alone. The implications of this

physical and mathematical change in the system can be interpreted from two

different perspectives.
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4.4.1 Brain Controls the Body

A first position puts priority to the fact that the brain is the site of control and

the body is the system to be controlled. Thus, the brain as the sole control

authority is fully responsible for defining the characteristics of the movements

based on knowledge about the body. Grounded in this dualistic viewpoint, much of

neuroscience has tried to shed light on the neural representations and neural activity

patterns for the generation of movements. The search for the ‘control signals’ in

the primary motor or parietal cortices that directly correlate with the behavior at

the single-neuron [83] or population level [84, 85] follows this basic position, if not

philosophically, then at least practically. To facilitate this search, the movements

themselves have been held simple to allow many repetitions under the ‘same’

conditions and also to eliminate any interactive effects from the environment.

Many studies on intracortical data in non-human primates have adopted such

simple center-out reaching [83,84] or cranking tasks [86]. While intriguing insights

have been gained, interactions with an object and the environment would present

a step up, not only in complexity, but also in conceptual terms. Our focus on the

interaction with a dynamical object indicates that the physical properties of the

body may present important challenges to the interpretability of purely top-down

perspectives. Concretely, following our results, issues whether incoming sensory

information affected the behavior or not, and whether the cost function was effort

or smoothness became blurred by adding simple biomechanical elements. In light

of these findings it becomes evident that specific facets of control might be ‘filtered

out’ by the dynamics of the body.
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4.4.2 Brain and Body Work Together

In a second view, innate dynamical properties of the body, such as mechanical

impedance, are interpreted as a lower-level autonomous control authority that

shares the control responsibility with the higher-level information processors. Thus,

this embodiment of control means that not all characteristics of observable behavior

can be attributed to the higher-level controller. The significance of the innate

passive dynamics for producing movements was strikingly demonstrated in a series

of passive walkers [87, 88]. These non-actuated mechanical linkages could produce

stable gaits in the absence of any motors, sensors, or a ‘brain’. Passive interactions

of the body with a complex environment could even allow a dead fish to swim

upstream [89].

Undeniably, functional human behavior is richer than these passive movements,

and bodily mechanics alone cannot generate the full spectrum of functionally

specific behavior. Hence, descending neural commands need to be sensitively

interfaced to not only account for, but also leverage bodily mechanics. The physical

properties of the body provide useful resources for embodied computation for both

perception and action. ‘Morphological computation’ for guided actions are well

studied in animals. For instance, a housefly’s compound eyes can afford complex

navigation skills using simple visuomotor circuitry [90], and the biomechanics

of a goat’s hoof enables localized slip control in rough terrains [91]. Similarly

in humans, it has been demonstrated that joint compliance plays a significant

role in accurate haptic perception: correct tuning of stiffness largely simplifies

the computational load during control of movement [92]. In the present results,

mechanical impedance of the arm proved capable of negotiating the unexpected

perturbations in a feedback-deprived control scheme, highlighting the possibility of
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producing ‘intelligent’ responses through morphological or embodied computation.

Further, physical processes on multiple scales, ranging from passive muscle

force enhancement via titin proteins [93] to limb inertial mechanics, provide

means to distribute control authority across the body, thereby alleviating some

of the computational burden on the brain. In human movement neuroscience,

only few approaches have placed emphasis on the dynamics emerging from the

interplay between control and the dynamics of the body. From a neurophysiological

perspective, the equilibrium point hypothesis aimed to reveal how the central

nervous system specifies lambda, the equilibrium or reference configuration of a

limb, via tuning of the phasic and tonic stretch reflexes [22]. From a mechanical

perspective, a number of studies have demonstrated the tuning of impedance

during movement [5, 67]. Further, studies on bimanual coordination have detailed

how rhythmically moving limbs self-organize into autonomous nonlinear oscillators

that synchronize into stable phase relations, without requiring detailed top-down

control [94, 95]. Hence, movements may be the emerging response of the body

leveraging the environment with simple motor commands [96]. However, to date,

these approaches have been limited to simple tasks. In order to advance one step

further, this study employed optimal feedback control as a high-level controller

that guides the behavior of the low-level dynamics as a way to reconcile the duality

between information-processing of the brain and embodiment. Such interfacing

ultimately shapes the final behavior.

4.5 Conclusions

This study highlighted the importance of mechanical impedance of the body in

modeling human movements. The experimental assay was humans transporting a
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complex object with underactuated dynamics. Even the simple linear transport

revealed that the unactuated degree of freedom required more than a bell-shaped

velocity profile of the hand, quintessential in reaching or transporting a rigid

body. Without a regard for the compliance of the body, an information processing

OFC model fell short of reproducing characteristic features of human movements;

a successful optimal feedback controller necessitated ‘embodiment’ (mechanical

impedance) in the control loop. Perturbation trials further revealed that impedance

buffered the energy and thereby obviated the need for feedback in the optimal

controller. Including impedance into the model also blurred the distinction between

cost functions previously suggested for various reaching tasks. Taken together,

our results emphasize that attention must be given to body mechanics to better

understand the controller. The results highlight the formidable challenge to gain

insights into the neural controller due to its tight intertwining with the body’s and

the task’s dynamics.
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