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Impact statement 14 

A computational approach identifies control strategies in humans and monkeys to serve as basis for 15 
analysis of neural correlates of skillful manipulation. 16 

 17 

Abstract  18 

Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with 19 
different control strategies. Given only observations of behavior, is it possible to infer the control 20 
strategy that the subject is employing? This challenge is particularly acute in animal behavior because 21 
we cannot ask or instruct the subject to use a particular control strategy. This study presents a three-22 
pronged approach to infer an animal’s control strategy from behavior. First, both humans and monkeys 23 
performed a virtual balancing task for which different control strategies could be utilized. Under 24 
matched experimental conditions, corresponding behaviors were observed in humans and monkeys. 25 
Second, a generative model was developed that identified two main control strategies to achieve the 26 
task goal. Model simulations were used to identify aspects of behavior that could distinguish which 27 
control strategy was being used. Third, these behavioral signatures allowed us to infer the control 28 
strategy used by human subjects who had been instructed to use one control strategy or the other. 29 
Based on this validation, we could then infer strategies from animal subjects. Being able to positively 30 
identify a subject’s control strategy from behavior can provide a powerful tool to neurophysiologists as 31 
they seek the neural mechanisms of sensorimotor coordination.  32 
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Introduction 35 
Almost all actions in daily life can be achieved in multiple ways that all can lead to the desired task goals. 36 
As an example, consider a driver steering a car on a curvy road. She may choose different paths 37 
depending on whether she wants to maintain a consistent distance from the median strip or whether 38 
she aims to minimize changes in velocity. Both strategies can take the driver to her destination, maybe 39 
even arriving at the same time, although the precise path taken by the car in both situations will differ. 40 
How could one identify the underlying control objectives from differences in observed behavior? A 41 
considerable number of studies in human movement neuroscience have aimed to identify the control 42 
strategies in a given task based on their kinematic manifestations (Braun et al., 2009; Izawa et al., 2008; 43 
Nagengast et al., 2009; Razavian et al., 2023; Uno et al., 1989; Wong et al., 2021). However, 44 
experimental tasks are often chosen to elicit consistent behavioral features across repetitions and 45 
individuals, not only to facilitate analysis, but also to constrain control to a single objective. Behavior in 46 
natural settings, however, is often complex and highly variable across repetitions, and individuals can 47 
employ a multitude of strategies to accomplish a task. To date, understanding of such variable behavior 48 
- let alone its neural bases - has posed formidable challenges (Croxson et al., 2009; Diedrichsen et al., 49 
2010; Kawato, 1999; Scott, 2004). 50 

Attempts to understand the neural underpinnings of control objectives have been pursued in research 51 
on both humans and non-human primates (Benyamini & Zacksenhouse, 2015; Cross et al., 2023; 52 
Croxson et al., 2009; Desrochers et al., 2016; Kao et al., 2021; Miall et al., 2007; Nashed et al., 2014; 53 
Omrani et al., 2016). Yet, these two lines of inquiry have remained largely parallel with few direct 54 
bridges: human behavioral and computational research has mainly focused on the analysis of behavior, 55 
while animal research has used invasive methods such as intracortical recordings to gain direct insights 56 
into the neural mechanisms of movement control. Experiments with humans tend to use detailed 57 
experimental manipulations to elicit features of motor behavior that afford insights into its governing 58 
principles. Using a wide range of tasks, from simple reaching to interacting with complex objects, 59 
mathematical models with specific control algorithms have been used to reproduce the salient features 60 
of behavior (Crevecoeur et al., 2019; Diedrichsen, 2007; Nagengast et al., 2009; Nayeem et al., 2021; 61 
Razavian et al., 2023; Yeo et al., 2016). However, understanding the neural underpinnings of movement 62 
control at the intracortical level in healthy humans has remained a challenge. On the other hand, animal 63 
research, in particular with non-human primates, allows sophisticated methods to directly record neural 64 
activity to afford insights into neural correlates of motor behavior. Ultimately, this knowledge should 65 
transfer to how the human brain functions (Badre et al., 2015), but those links must be built. 66 

To achieve this objective, cooperative study designs between human and animal motor research are 67 
needed to understand the neural basis of human motor skill (Badre et al., 2015; Rajalingham et al., 68 
2022). However, there are difficult challenges to overcome: First, cooperative design requires matching 69 
behavioral tasks that can be performed similarly and with the same conditions by both humans and 70 
animals. The most appropriate animal model for many human behaviors are monkeys. Second, the goals 71 
and constraints of behavioral studies with monkeys and humans are somewhat different, which can 72 
preclude a direct comparison. Behavioral tasks used with monkeys are typically simpler than those used 73 
with humans, due to the animals’ more limited cognitive capacities. Also, studies with monkeys aim for 74 
highly repeatable behaviors to facilitate the examination of neural activity by aggregating it across trials 75 
or days. In contrast, studies of human behavior can push toward tasks that are more cognitively 76 
sophisticated and that capture the complexity that abounds in natural activities. This study bridges the 77 
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gap between human and monkey behavioral studies to build toward an understanding of the neural 78 
principles of human motor control.  79 

We used an experimental paradigm, the Critical Stability Task (CST), that can be performed by both 80 
humans and monkeys (Quick et al., 2018). The CST requires the subject to balance an unstable virtual 81 
system governed by a very simple dynamical equation (see Met hods). Performing the task is akin to 82 
balancing a virtual pole. The CST has features that make it suitable for the study of more complex motor 83 
behaviors. First, while the goal remains the same, the difficulty of the task can be titrated. Second, it 84 
involves interactions with an object (albeit virtual in our case) so that continuous adjustments are 85 
required to succeed. Each trial evokes unique behavior that may reflect different control strategies to 86 
accomplish the task. In addition, even if the same control strategy is employed, each trial generates 87 
different behavior due to sensorimotor noise and the task’s instability. As in the car driving analogy, the 88 
subjects might seek to optimize position, or they might seek to optimize velocity, and different 89 
behavioral strategies may lead to equal success.  90 

Because of its complexity and redundancy, each trial of the CST is unique. The goal of the study is to 91 
infer the subject’s control policy (i.e., optimize position or optimize velocity) from observations of their 92 
behavior. When the subjects are humans, it is possible to instruct them to employ a particular strategy 93 
or to ask them posthoc what strategy they adopted to succeed at the task. This explicit route is 94 
definitely not available with monkeys. As we are still quite far from ‘reading out’ strategies from neural 95 
activity, we need to start with behavior to infer the control strategies. Hence, this study adopted a 96 
computational approach based on optimal control theory to simulate behavior during the CST in various 97 
conditions. This approach allowed us to make predictions about the behavioral signatures associated 98 
with different control policies, which we then used to analyze the experimental data from both humans 99 
and monkeys.  100 

In overview, this study investigated, through experimental data and model-based simulations, the 101 
sensorimotor origins of behavioral strategies in humans and non-human primates performing the CST. 102 
We developed the experimental paradigm such that humans and monkeys executed the task under 103 
matching conditions while recording movement kinematics in exactly the same way. An optimal control 104 
model was used to simulate different control objectives, through which we identified two different 105 
control strategies in the experimental data of humans and monkeys. We discuss how in the future these 106 
results could guide the analysis of neural data collected from monkeys to understand the neural 107 
underpinnings of different control policies in an interactive feedback-driven task with redundancy. 108 

Results 109 
The Critical Stability Task (CST) involved balancing an unstable system using horizontal movements of 110 
the hand to keep a cursor from moving off the screen (Figure 1A, C). This study collected data from 111 
human subjects performing the CST and compared it to previously collected data from monkeys 112 
performing the same task. The hand’s displacements were recorded by 3D motion capture (Qualisys, 113 
Gothenburg), with a reflective marker attached to the hand. The cursor dynamics were generated by a 114 
linear first-order dynamical system, relating hand and cursor kinematics as described in Quick et al., 115 
2018: 116 𝑥ሶ = 𝜆(𝑥 + 𝑝) ( 1)
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where 𝑥 and 𝑥ሶ  are the horizontal cursor position and cursor velocity on the screen, 𝑝 is the horizontal 117 
hand position, and 𝜆 is a positive constant fixed at the beginning of each trial. The parameter 𝜆 sets the 118 
gain of the system. When 𝜆 is larger, the cursor would tend to move faster, making the task more 119 
difficult as faster and more precise hand movements were required to maintain balance. 120 
Correspondingly, success rates at the task decreased with increasing 𝜆. To summarize the skill of human 121 
and monkey participants, we identified the value at which subjects succeeded at only 50% of the trials 122 
and defined that value as the “critical” 𝜆.  123 

The task goal was to keep the cursor within a range of space shown on the screen, i.e., −𝑐 ≤ 𝑥(𝑡) ≤ 𝑐, 124 
where 𝑐 was a positive constant. This created a redundancy in achieving the task goal as there were 125 
infinitely many ways in which one could balance the cursor inside the specified region. We examined 126 
movement kinematics to identify control strategies employed by different subjects, or across different 127 
trials.     128 

In a previous study, two Rhesus monkeys were trained to perform the CST under increasing difficulty 129 
levels (Quick et al., 2018). Similarly, here 18 human subjects were recruited to perform the same task 130 
under comparable experimental conditions as the monkeys (see Methods). Figure 1 illustrates the 131 
experimental setup for both monkeys and humans (Figure 1A and 1C) and shows examples of their 132 
behavior (Figure 1B and 1D). Overall, there were similarities in performance between humans and 133 
monkeys. To further quantify and compare this performance across humans and monkeys, we defined a 134 
set of control metrics to assess different aspects of control as detailed in the following. 135 

 136 
Figure 1: Experimental setup for monkeys and humans performing the CST. Monkeys (A) and humans (C) controlled an 137 
unstable cursor displayed on a screen using lateral movements of their right hand. The hand movements were recorded using 138 
motion capture; the data were used in real-time to solve for the cursor position and velocity through the CST dynamics equation. 139 
Timeseries of the hand (red) and cursor (blue) movements shown for four example trials from monkeys (B) and humans (D).  140 

Experiment 1: CST performance without instructed strategy 141 
In the first experiment, six human subjects performed the CST with the only instruction to “perform the 142 
task without failing to the best of your ability”. Failure occurred if the cursor escaped the boundaries of 143 
the screen (±10cm from the center) within the trial duration of 6s. Subjects received categorical 144 
feedback about the outcome at the end of each trial in a text appearing on the screen reading “Well 145 
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done!” for success, and “Failed!” for failure. The degree of difficulty, set by 𝜆, was increased stepwise 146 
across trials until the subject could no longer perform the task (see Methods for the specifics about the 147 
setting of 𝜆 values). 148 

We first sought to examine the main characteristics of behavior in CST performance and how it 149 
compared between humans and monkeys. To quantify the overall behavior, four main metrics were 150 
employed as described and motivated below. To begin, we considered the overall success rate in the 151 
task among different individuals, before focusing on the kinematics of task performance. Figure 2A 152 
illustrates the success rates and how they dropped as the task difficulty increased. Both humans and 153 
monkeys showed a similar pattern of decrease in success rate which was well-captured with a sigmoidal 154 
function. Expectedly, individuals varied in their ability to achieve high difficulty levels as a measure of 155 
skillful performance, indicated by their “critical 𝜆 value”, that is, the value of 𝜆 when the success rate 156 
drops below 50%. To investigate the performance in more detail, the kinematics of movement were 157 
examined, specifically the hand and cursor position during each trial. As indicated in equation ( 1), the 158 
hand position 𝑝 was the control input to the system which aimed to control the cursor position 𝑥 as the 159 
variable of interest. Due to the unstable nature of the task, drifting of the cursor towards the edge of the 160 
screen demanded a response by a hand movement to avoid failure. As such, two simple metrics 161 
characterized control, one quantifying how the movement of hand and cursor correlated, and a second 162 
one to what degree the hand response lagged cursor displacements. Figure 2B shows the correlation 163 
between the cursor movement and the hand movement as a function of task difficulty. The strength of 164 
the correlation increased as trials became more challenging in both monkeys and humans, asymptoting 165 
towards –1. According to equation ( 1), this behavior was equivalent to reducing the sum (𝑝 + 𝑥) when 166 𝜆 increased, so as to prevent rapid changes in cursor velocity 𝑥ሶ , and, hence, reduce the chance of failure.  167 

The response lag from the cursor movement (observed feedback) to the hand movement (control 168 
response) is an important characteristic of a control system. As shown in Figure 2C, by increasing the 169 
task difficulty 𝜆, the lag decreased for all subjects, meaning subjects generated faster corrective 170 
responses to cursor displacements in more difficult trials. A possible reason for such behavior is that 171 
higher 𝜆 values meant increased instability of the system, which required faster responses to avoid 172 
failure. Whereas in easy trials, due to slower dynamics of the system, subjects could afford delayed 173 
responses to cursor displacements (and hence, larger lags) and still manage to succeed.   174 

As the fourth metric, we also calculated the control gain by measuring the ratio of root mean squared 175 
(RMS) of hand position to the RMS of cursor position for each trial. This measure determined to what 176 
extent the control signal (hand movement) compared in magnitude to the cursor movement. A large 177 
gain meant that on average across a trial, the hand exhibited larger movements than necessary to 178 
correct for cursor deviations. Figure 2D illustrates the calculated gain as a function of task difficulty for 179 
humans and monkeys. As shown, except for Monkey J, the gain showed a gradual decrease as the task 180 
difficulty increased for most individuals. Such decrease could be due to larger cursor movements at 181 
higher difficulty levels, and perhaps more efficient corrective hand responses to cursor displacements. 182 
To the latter, it is worth noting that for high λ values, small hand movements could cause large cursor 183 
displacements, which was detrimental to the task success. Therefore, pruning any task-irrelevant hand 184 
movements, consistent with promoting efficiency, seemed essential to succeed in more difficult trials. 185 
Overall, the control metrics presented in Figure 2 give insight into how the CST was performed: as the 186 
task difficulty increased, subjects tended to respond to cursor displacements faster (that is, with lower 187 
lag), more precisely (seen in the stronger hand-cursor correlation), and more efficiently (with lower 188 
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gain). Behavior was comparable between humans and monkeys, which suggests that there were 189 
underlying control strategies used in common by both species. Next, we sought to detect those control 190 
strategies.  191 

 192 
Figure 2: Overall behavioral characteristics of CST performance as a function of task difficulty (λ). Data is shown for two 193 
individual monkeys (first two columns from left) from a previous study (Quick et al., 2018), as well as an example human 194 
individual (third column from left) and the average across human subjects (right-most column). For the individual subjects, each 195 
data point and its corresponding error bars represent the mean±SD across trials for any given difficulty level, respectively. For 196 
the human average plot, the data points and their corresponding error bars represent the mean±SE across individuals for each 197 
difficulty level. A. Psychometric curves for success rate (%) as a function of task difficulty (λ) the difficulty level at which the 198 
success rate crossed 50% was considered as the critical stability point (λc), indicating the individual’s skill level in task. B. 199 
Correlation between the hand and cursor movement during CST. C. Sensorimotor lag between the cursor and the hand 200 
movements. D. Ratio of hand RMS over the cursor RMS calculated for each trial, representing the gain of the response.    201 

Redundancy of control strategies in CST performance 202 
The CST, as described earlier, affords redundancy in the control strategies that could result in task 203 
success. Although covert in aggregate level of performance (i.e., Figure 2), single trial observations of 204 
hand and cursor movements suggested that different underlying control objectives might be at play. 205 
Two types of behavioral patterns appeared recognizable in the data. In one case, the cursor seemed to 206 
be always balanced around the center of the screen, and any deviations from the center induced a 207 
response to bring the cursor back to the center. This was reflected in the oscillatory movements of the 208 
cursor around the center, shown in example trials in Figure 1B and D (first row). In other trials, the 209 
cursor either exhibited a slow drift from the center or remained relatively still anywhere within the 210 
boundaries of the screen, with only limited attempts to bring the cursor back to the center (for example, 211 
Figure 1B and D, second row). We hypothesized that these patterns of behavior arise from different 212 
control objectives, each focused on a different state variable in the state-space of the cursor movement. 213 
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In the former case, the position of the cursor appeared to be the primary control variable. Under this 214 
strategy, subjects might pursue the objective of keeping the cursor near the center of the screen. We 215 
refer to this strategy as the Position Control strategy. In the latter case, the cursor velocity seemed to be 216 
of primary importance for control, with the objective to slow down cursor velocity regardless of its 217 
position in the workspace. We refer to this strategy as the Velocity Control strategy. 218 

Can we distinguish between different control strategies by examining behavior? To test this idea, we 219 
took a computational approach by developing a generative model based on optimal feedback control 220 
(Todorov & Jordan, 2002) that could simulate the task under different conditions and with different 221 
objectives (Todorov & Jordan, 2002). The model involved a controller that generated optimal motor 222 
commands based on a given strategy to perform the CST via a simple effector model. The model also 223 
contained a state estimation block that estimated the states of the system based on the given feedback 224 
(Todorov, 2005). In this case, cursor position and cursor velocity were used as feedback to the controller 225 
at each time step. Figure 3A illustrates a block diagram of this model.  226 

 227 
Figure 3: A generative model to performs the CST. A. An optimal feedback controller generates motor commands based on two 228 
control objectives, position and velocity control. The motor command leads the movement of the effector (hand), which 229 
performs the CST. The cursor position and velocity are provided as feedback from which all the states are estimated and fed 230 
back to the controller. B and C. Example trials simulated under the two control objectives for different difficulty levels: keeping 231 
the cursor at the center (B; position control) and keeping the cursor still (C; velocity control). 232 

 233 

The control gains used in the controller to generate the motor commands were optimally found by 234 
minimizing the sum of two cost functions: the cost of effort to reduce energy, as well as the cost of 235 
accuracy that prevented the states of the system from making large deviations ( 2): 236 

𝐽 =  ෍൫𝐱௧் 𝑸𝐱௧ + 𝑢௧் 𝑅𝑢௧൯௡
௧ୀଵ  ( 2) 

where 𝑢 and 𝐱 represented the motor command and the state vector of the system, respectively. In this 237 
model, the state vector consisted of six states: the position, velocity and acceleration of the hand, as 238 
well as the position, velocity and acceleration of the cursor (see Methods). Variables 𝑡 and 𝑛 represent 239 
the time, and the total number of time steps, respectively, in a trial. The matrix 𝑸 and the scalar 𝑅 240 
determined the weight of accuracy and effort in the cost function, respectively. Importantly, the matrix 241 𝑸 allowed for determining which states of the system were of primary importance in the control 242 
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process. Therefore, the implementation of different control objectives in the controller was done 243 
through setting the 𝑸 matrix appropriately. As such, a Position Control strategy was implemented by 244 
setting the weight of cursor position in the 𝑸 matrix to a large value, emphasizing the primacy of cursor 245 
position as a control variable. Similarly, to implement the Velocity Control strategy, the weight of the 246 
cursor velocity in the 𝑸 matrix was set to a large value (see Methods). By simulating the task for each 247 
control strategy, we could generate synthetic behavior similar to that of humans and monkeys. Figure 248 
3B and C illustrate a few example simulations of the task under different difficulty levels for the Position 249 
Control and Velocity Control, respectively. As exemplified, the simulated trials for Position Control show 250 
oscillatory movements of the cursor around the center, whereas the trials generated based on Velocity 251 
Control, exhibited slow drift of the cursor from the center with minimal attempt to correct for such drift. 252 
These characteristics were similar to the observed patterns of behavior in human and monkey data 253 
(Figure 1B and D).  254 

To further identify the behavioral signatures associated with each control objective, beyond the 255 
apparent differences between single trials, we conducted a series of simulations in which the model 256 
performance was examined for a range of task difficulties, and novel predictions of the model for each 257 
control objective were assessed. For each control objective, the task was simulated for different 258 
difficulty levels, ranging from 𝜆 = 1.5 to 𝜆 = 7, with increments of ∆𝜆 = 0.2. For each difficulty level, 259 
500 trials were simulated (see Methods for details). In the first step, we performed the same set of 260 
analyses as reported in Figure 2 to evaluate how the model compared to human and monkey behavior 261 
at an aggregate level of CST performance. Figure 4A illustrates the overall performance of the model for 262 
both Position Control and Velocity Control strategies. As shown, for each metric, the model exhibited 263 
comparable behavior to experimental data with regard to the task difficulty: the success rate dropped in 264 
a sigmoidal fashion, the correlation between hand and cursor movements increased, and the response 265 
lag between hand and cursor as well as the hand/cursor gain decreased. These results showed that, 266 
overall, both simulated control strategies were capable of producing similar behavioral characteristics as 267 
humans and monkeys. But more interestingly, despite no apparent advantage of one strategy over the 268 
other in the task success (Figure 4A, top panel), they showed differences in the magnitude of hand-269 
cursor correlation, lag and gain. Namely, Position Control consistently showed larger magnitudes for 270 
correlation, lag, and gain for any given task difficulty.  271 

 272 

  273 
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 275 
Figure 4: Different control objectives result in measurably different behavior. Overall performance of the model (A) and human 276 
subjects (B) for two control objectives, Position Control and Velocity Control. The four rows show success rate (first row), 277 
correlation between hand and cursor movement (second row), sensorimotor lag between cursor and hand movements (third 278 
row), and the hand/cursor gain, defined as the RMS of hand movement over the RMS of cursor movement during each trial (last 279 
row). The error bars on the human average data indicate the standard error of the mean across subjects for each group. C. The 280 
average performance across difficulty levels and subjects within each group. The Critical λ (first row) indicates the difficulty level 281 
at which the success rate crosses 50%.  282 

Experiment 2: CST performance under explicit instructions 283 
The model indicated that differences in behavioral metrics exist for Position vs Velocity Control. This led 284 
to a new experiment for which we recruited two new groups of human subjects (n=6 per group). Each 285 
group performed the CST under the same procedure as described in Experiment 1, except that this time 286 
each group was explicitly instructed to use a specific control strategy. One group was asked to perform 287 
the task with the objective of “keeping the cursor at the center of the screen at all times”. This 288 
instruction was to induce a Position Control strategy. The second group was asked to “keep the cursor 289 
still anywhere within the boundaries of the screen”. This instruction aimed to induce a Velocity Control 290 
strategy (see Methods for details). In each group, the kinematic behavior of hand and cursor was 291 
collected, and the control metrics were calculated. The goal was to elicit differences in performance 292 
between the two groups and, if such differences were found, determine whether they matched the 293 
behavior of the corresponding model. 294 

The summary of performance for both human subject groups is shown in Figure 4B. The general trends 295 
of all four measures with respect to the task difficulty were consistent with the data generated by the 296 
model, as well as the human data from Experiment 1 (Figure 2). Importantly, the behavioral differences 297 
between the two control strategies in human data matched the predictions of the model relatively well 298 
(Figure 4A, B): the rate of success was similar, and with the exception of hand-cursor correlation, the 299 
group with Position Control instruction showed significantly larger hand-cursor lag (unpaired t-test: t10 = 300 
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3.79, p = 0.004) and hand-cursor gain (unpaired t-test: t10 = 5.27, p < 10-3) compared to the group with 301 
Velocity Control instructions (Figure 4C). 302 

These results showed that the model not only captured the overall performance features observed in 303 
the data, it also successfully demonstrated the redundancy of control strategies in CST performance, 304 
and qualitatively distinguished between such strategies at an aggregate level of performance. To ask 305 
further, can we identify, in a quantitative way, the control strategy employed by an individual, or even in 306 
a given trial, when no explicit information about their preferred strategy is available? To this end, we 307 
examined performance at single-trial level and introduced quantitative measures that evaluated the 308 
degree to which a particular control strategy was used in that trial, as described in the next section.  309 

Behavioral traces of control strategy in an individual’s overall performance  310 
To further investigate what control strategy was preferred by an individual or in a given trial, we 311 
examined the predictions of the model about the cursor behavior in state space, and then tested these 312 
predictions using experimental data from Experiment 2. Two metrics were defined that captured the 313 
state-space behavior of the cursor in each trial. First, we examined the average cursor position and 314 
cursor velocity in each trial, represented in the state space of cursor movement. This provided a single 315 
data point for each trial in state space, indicating whether on average there was a drift in cursor position 316 
and its velocity away from zero (𝑥 = 𝑥ሶ = 0). It was expected that for Position Control, all trials scattered 317 
around the origin of the state space, whereas for Velocity Control, they could deviate from the origin. 318 
We also examined whether the states of the cursor correlated. Figure 5A illustrates the state-space 319 
representation of cursor movement based on model simulations for both Position Control (top) and 320 
Velocity Control (bottom), where each data point represents one simulated trial. As shown, the 321 
distribution of trials in this space differed markedly between the two control objectives. The Position 322 
Control strategy resulted in a distribution with little correlation between cursor position and its velocity, 323 
and closely scattered around the center. In contrast, the Velocity Control strategy revealed an elongated 324 
distribution with a relatively strong correlation between the cursor position and its velocity. This allowed 325 
us to distinguish between different individuals’ preferred control strategy.  326 

To validate the model predictions, the same analysis was performed on the empirical data from 327 
Experiment 2. Figure 5B illustrates three example subjects from Position Control and Velocity Control 328 
groups, and Figure 5C shows a summary of how the correlation values differed across control strategies 329 
for the model and the empirical data. As shown, overall, subjects in the Velocity Control group showed 330 
significantly larger correlations than individuals in the Position Control group (unpaired t-test on the 331 
Pearson correlation coefficient: t10 =4.06, p=0.002). Based on the within-group variability, this allowed 332 
us to determine how pronounced a subject executed their respective strategy compared to other 333 
subjects in the same group. This metric, therefore, provided a quantitative way of estimating where on 334 
the spectrum of control strategy an individual’s performance lies with respect to other performers.  335 

 336 
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 337 
Figure 5: State-space distribution of trials reveals different control strategies. A. Mean cursor velocity plotted against mean 338 
position for each trial, shown for the position control objective (top) and velocity control objective (bottom). Each data point 339 
represents one successful trial and was simulated for a range of difficulty levels up to the critical λ value (corresponding to 50% 340 
success rate). B. Three example human subjects from the position control group (top row) and velocity control group (bottom 341 
row). Each data point represents one successful trial. The data represents an ensemble of trials ranging in difficulty levels up to 342 
the critical λ value for each subject. R indicates the correlation between the trial position and velocities. C. Pearson correlation 343 
coefficient between cursor mean position and velocity for each control objective in the model (left) and human data (right). The 344 
human data shows the mean (±SE) across subjects for each control objective group.  345 

The effects of control strategy at a single-trial level of behavior 346 
Due to the task’s redundancy the choice of control strategy may not be fixed for an individual 347 
throughout their performance and might vary from one trial to the next. It is therefore of great interest 348 
to determine, in a given trial, to what extent the behavior is the outcome of Position versus Velocity 349 
Control strategies. To this end, we examined the magnitude of cursor movement calculated as the root 350 
mean squared (RMS) of its position and velocity in each trial. This was directly related to the objective 351 
functions used in the model (equation( 2), which provided a more direct comparison regarding the 352 
primacy of position versus velocity in the control of the cursor: a Position Control strategy aimed to 353 
minimize the RMS of cursor position, while Velocity Control aimed to minimize the RMS of cursor 354 
velocity. This distinction could be well represented in the state-space of the cursor movement.  355 

Figure 6A illustrates the model prediction for the RMS of cursor position and cursor velocity plotted 356 
against each other for the Position Control (top) and Velocity Control (bottom). For Position Control, the 357 
distribution of trials leans towards the vertical axis (restricting cursor position but allowing large cursor 358 
velocities), whereas for Velocity Control, it leans mainly towards the horizontal axis (a larger range of 359 
cursor positions but restricted velocities). This distinction could be quantified by the slope of a fitted 360 
regression line to the data, with relatively larger slopes indicating Position Control and smaller slopes 361 
signaling Velocity Control. Similar patterns of behavior could be observed in the human data from 362 
Experiment 2 as illustrated in Figure 6B and C, with the Position Control group showing significantly 363 
larger regression slope than the Velocity Control group (unpaired t-test, t10 = 6.33, p<0.001). The 364 
regression slope could more clearly distinguish between individual trials than could the correlation 365 
coefficient metric shown in Figure 5, regarding their corresponding control strategy: if a given trial in the 366 
RMS space of the cursor movement lay below/above a certain slope threshold, its performance could be 367 
considered the result of a Velocity/Position Control strategy. We could therefore use this behavioral 368 
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feature to develop a classifier that inferred, with a certain level of confidence, the underlying control 369 
strategy in the performance of an individual in any given trial. 370 

 371 
Figure 6: Identifying control strategy based on magnitude of cursor movement in the state space. A. Magnitude of cursor 372 
movements quantified by the RMS of position and cursor velocity for each trial, plotted against each other; position control 373 
objective (top) and velocity control objective (bottom). Each data point represents one successful trial and was generated based 374 
on the model simulations for a range of difficulty levels up to the critical λ value (corresponding to 50% success rate). B. 375 
Performance of three example subjects from the position control group (top row) and velocity control group (bottom row). Each 376 
data point represents one successful trial. The data represents an ensemble of trials ranging in difficulty level up to the critical λ 377 
value for each subject. The values of the regression slopes are also shown. C. Summary of the regression slopes for the RMS 378 
plots, shown for each control objective in the model (left) and human data (right). The human data shows the mean (±SE) across 379 
subjects for each control objective group.   380 

 381 
Inferring control strategies from behavior during CST performance 382 
When monkeys performed the CST, we lacked explicit knowledge about which strategy they might have 383 
employed. This is similar to Experiment 1; when humans performed the CST with no specific 384 
instructions, their control objective was not explicitly available. To achieve the goal of inferring an 385 
individual’s control objective based on their performance, we used the control characteristics that our 386 
computational approach introduced to distinguish between different control strategies. To this end, the 387 
simulation results based on the cursor movement in its RMS space (Figure 6A) were used to train a 388 
simple classifier, a support vector machine (see Methods). This classifier then determined, based on the 389 
learned regression slopes from the RMS distributions (Figure 7A), whether a given trial was likely 390 
performed under the Position Control, or Velocity Control strategy. We first tested the performance of 391 
the classifier on the empirical data from Experiment 2, where the intended control strategy used by 392 
each subject was known.   393 

Figure 7B shows the cursor RMS data from three example subjects in each instructed group (similar to 394 
Figure 6); for each trial (data point) a probability was obtained from the classifier indicating to what 395 
extent a given trial was performed with the Position Control strategy (see Methods). A trial with the 396 
estimated probability of >70% was considered Position Control, while a probability of <30% for a trial 397 
signified Velocity Control. All other probabilities were considered as ‘Uncertain’ as to which of the two 398 
control objectives were used. As shown in Figure 7B, for the Position Control group, most of the trials 399 
were rightfully classified as Position Control trials, and similarly for the Velocity Control group, the 400 
majority of trials were classified under Velocity Control strategy. The average probability across all trials 401 
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for each individual was also obtained as an overall measure of the control objective for that subject. This 402 
average measure is shown in Figure 7B for the example subjects and summarized in Figure 7C for all 403 
subjects in each group. This showed that the classifier correctly determined the control strategy used by 404 
each individual without being trained on any experimental data.  405 

 406 

 407 
Figure 7: Classifying control strategies in humans who received explicit instructions. A. Simulated data in the RMS space of 408 
cursor movement used as training set for a classifier to determine the control objective of each trial. B. Data from three example 409 
subjects in each group, where each trial was classified as position control (brown), velocity control (cyan), or uncertain as to the 410 
control objective (grey). To obtain the control objective of each trial, the classifier (a support vector machine; see Methods) 411 
obtained the probability of that trial performed with position control objective, where P(pos)>70% was classified as position 412 
control, P(pos)<30% was classified as velocity control, and everything else was classified as uncertain. The average of P(pos) 413 
across all trials for each individual is shown inside the respective plot. C. Overall probability of Position Control summarized for 414 
all subjects instructed in the position and velocity control groups of Experiment 2.  415 

The ultimate test of our approach would be to infer the control strategy used by individuals whose 416 
strategy was unknown, that is the monkeys, and humans who received no instructions about control 417 
strategy in Experiment 1. After representing the performance of each subject in the RMS space, the 418 
classifier was used to determine what control strategy was used in each trial. Figure 8 illustrates the 419 
classification results for human subjects who received no instructions (Experiment 1) as well as two 420 
monkeys (Monkey I and J from Quick et. al. 2018). The model simulations are also provided as reference 421 
in Figure 8A.   Figure 8B and C show the data from three example human subjects, as well as two 422 
monkeys, in which each trial is either labelled as Position Control (brown), Velocity Control (cyan), or 423 
Uncertain (grey). Two example trials, one from each inferred control strategy are also singled out from 424 
each subject’s performance in Figure 8B and C (bottom row) to show how the hand and cursor 425 
movement generally behaved under each control strategy. Calculating the average probability of control 426 
strategy for each individual, similar to Figure 7, we could infer which control strategy was of primary 427 
importance for each subject (Figure 8D). For example, human subject NI-S2 more likely adopted a 428 
Velocity control strategy, while human subject NI-S4 mainly performed the task with Position Control 429 
strategy (Figure 8B). Similarly, Monkey I seemed to prefer the Velocity Control strategy, while Monkey J 430 
most likely adopted a Position Control strategy (Figure 8C). 431 
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Ultimately, our procedure enabled us to not only infer the underlying control strategy at a single trial 432 
level, but also identify which control strategy was overall preferred by humans and monkeys when no 433 
explicit knowledge about their control strategy was available. These results are encouraging as they 434 
constitute an important step towards bridging our findings between human and monkey research, and 435 
ultimately guide neurophysiological analyses to identify the neural underpinnings of control strategy in 436 
the primates’ brain. 437 

 438 
Figure 8: Inferring control strategies in monkeys and humans who received no instructions. A. Simulated data in the RMS 439 
space of cursor movement was used as training set for a classifier to determine the control objective of a trial without explicit 440 
instructions. B. Data from three example human subjects with no instructions (NI) about the control objective. Each trial (data 441 
point) is classified based on the probability of position control, P(pos), obtained for each trial from the classifier. Trials with 442 
P(pos)>70% and P(pos)<30% were, respectively, labeled as position control (brown) and velocity control (cyan), while other 443 
probabilities were labeled as uncertain (grey). Two example trials, one from each control objective, are shown in the bottom 444 
row. C. The classifier was used on data from two monkeys (Monkey I and J) who performed the CST. Similarly, trials for each 445 
monkey were categorized as position control (brown), velocity control (cyan), or uncertain (grey). D. Overall probability of an 446 
individual preferring the position control strategy, shown for six humans and two monkeys. This measure was obtained for each 447 
individual as the average probability of position control across all trials.   448 

Discussion 449 
As we seek to understand the neural basis of human motor control, it is important to build links 450 
between studies in humans, where behavior can be complex and naturalistic, and monkeys, where 451 
direct neural recordings are possible. Doing so requires close coordination between researchers who 452 
work with humans and animals(Badre et al., 2015). With the goal to advance insights into movement 453 
control, the current work developed a novel approach to parallel human-monkey behavior. In a 454 
matching task design humans and monkeys performed a virtual balancing task, where they controlled an 455 
unstable system using lateral movements of their right hand to keep a cursor on the screen. The task 456 
was challenging and, importantly, exhibited different ways to achieve task success. The task required 457 
skill, but that was conceptually simple enough for monkeys to learn the skill and ultimately achieve the 458 
same level of proficiency as humans.  459 

The results showed that both humans and monkeys exhibited the same behavioral characteristics as the 460 
task was made progressively more difficult: success rates dropped in a sigmoidal fashion, the correlation 461 
magnitude between hand and cursor increased, and the response lag from cursor movement to hand 462 
response decreased. Further observations based on single trials showed that the task was possibly 463 
achieved with different control strategies, both across subjects and across trials. Our goal was to identify 464 
the underlying control objectives that led to different behavior, a model based on optimal feedback 465 
control was developed that identified two different control objectives that successfully captured the 466 
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average performance features of humans and monkeys: Position Control and Velocity Control. Both 467 
strategies produced behavior that was consistent with observations even at the single trial level. 468 
Additional experiments revealed that humans who followed specific instructions as to performing the 469 
task with Position Control (“keep the cursor at the center”) or Velocity Control (“keep the cursor still”) 470 
matched the behavior predicted by the two simulated control policies. Model simulations exhibited 471 
features that served to identify control strategies of humans and monkeys who received no specific 472 
instructions at a single trial level.  473 

Studies in motor neurophysiology have largely relied on simple paradigms such as center-out 474 
movements (Batista et al., 1999; Cisek et al., 2003; Georgopoulos et al., 1986; Pruszynski et al., 2011; 475 
Scott & Kalaska, 1997), which were brief in duration, highly stereotypical across repetitions, and could 476 
be performed to a reasonable degree of success with limited sensory feedback. Such characteristics 477 
were needed to make sense of noisy neural data through averaging trials over repeats of highly similar 478 
behaviors. However, such tasks are not common in natural settings, where we continually utilize sensory 479 
feedback to respond to our environment, interact with objects around us, and never do the same action 480 
the exact same way. Indeed, such fluid, prolonged and feedback-driven interactions are what we seek to 481 
understand both at the behavioral and neural levels. To this end, we need to investigate more complex 482 
tasks that involve sensory-driven control and allow for different control strategies while still within a 483 
sufficiently controlled scope. The task employed here, the Critical Stability Task (CST) offers advantages 484 
for the study of sensorimotor control that complements previously used tasks. The task continuously 485 
engages feedback-driven control mechanisms for a prolonged period of time and is rich in its trial-to-486 
trial and subject-to-subject variability. As we can titrate the difficulty of the task, both monkeys and 487 
humans can learn it and we can study and model their behavior. This opens the gate towards 488 
understanding the neural principles of skill learning beyond simple reaching tasks. This study showed 489 
that CST afforded the examination of control strategies through a computational approach that 490 
modelled monkey and human behavior in comparable fashion. 491 

A critical step for bridging insights between human and monkey behavior is through the computational 492 
approach that could explain behavior equally well in both human and monkey performance (Badre et 493 
al., 2015; Rajalingham et al., 2022). In an earlier attempt of modeling CST, a simple PD controller with 494 
delay in sensory feedback was proposed to explain the recorded behavior (Quick et al., 2018). However, 495 
the model was limited in its ability to capture most features observed in the data, such as success rate, 496 
or correlation between hand and cursor movements. In the past years, Optimal Feedback Control (OFC) 497 
has been introduced as an effective approach to understanding the control mechanisms of reaching 498 
movements at the level of behavior (Diedrichsen et al., 2010; McNamee & Wolpert, 2019; Pruszynski & 499 
Scott, 2012; Scott, 2004; Todorov, 2004), separately in human research (Liu & Todorov, 2007; Nagengast 500 
et al., 2010; Nashed et al., 2014; Razavian et al., 2023; Ronsse et al., 2010; Todorov, 2005; Todorov & 501 
Jordan, 2002; Yeo et al., 2016) and monkey research (Benyamini & Zacksenhouse, 2015; Cross et al., 502 
2023; Kalidindi et al., 2021; Kao et al., 2021; Takei et al., 2021). Here, the OFC framework was used to 503 
account for and make novel predictions about behavioral features in CST. Note that there are 504 
fundamental differences between reaching and CST movements, which needed to be accounted for in 505 
the modeling process. Unlike center-out reaching, the CST did not have a stationary target toward which 506 
the hand needed to move; rather, it required the hand/cursor to remain anywhere within a predefined 507 
area for a prolonged period of time. Also, the behavior was not tracking a point on the screen, but 508 
rather moving in opposite direction of the cursor, a behavior that probably requires more cognitive 509 
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resources. Despite these advanced task features, OFC as a feedback control framework proved an 510 
appropriate approach to examine this demanding interactive and sensory-driven task.  511 

Two aspects in our computational approach are worth discussing. First, we examined control strategies 512 
that only involved two main kinematic quantities of movement: cursor position and cursor velocity. One 513 
might argue that other kinematic features could be explored, such as acceleration or other higher 514 
derivatives of the cursor and/or the hand. However, it is important to note that, given the task of 515 
keeping the cursor within a specified area for a period of time, cursor position and velocity are the most 516 
directly related quantities to the goal of the task. These quantities were also less demanding to predict 517 
from sensory feedback, compared to, for example, acceleration (Hwang et al., 2006; Sing et al., 2009). 518 
Also note that the kinematics of the hand were not the variables of interest in the task, as the goal was 519 
to control the cursor, and not the hand.  520 

Second, we mainly explored Position and Velocity Control strategies separately to identify distinctive 521 
behavioral features associated with each one. Experimental data, however, shows that a large number 522 
of trials fall somewhere between the Position and Velocity Control boundaries (Figure 7 and 8). This 523 
could be due to a mixed control strategy, where both Position and Velocity control strategies contribute 524 
simultaneously to achieving the task goal, or where subjects switch strategies of their own accord. Here, 525 
we aimed to determine the behavioral signatures of the extreme cases, either predominantly based on 526 
position, or velocity of the cursor movement. This may increase the chance to detect differences more 527 
clearly in neural activity associated with each control objective in further analysis of monkeys’ 528 
neurophysiological data. Even though in this experiment only a subset of trials is amenable to a clear 529 
identification as using one control strategy or another, with monkeys it is possible to collect tens of 530 
thousands of trials over many days accumulating enough trials for analysis.  531 

Despite potential limitations, our approach was successful in two main ways. First, it provided a 532 
normative explanation for the macro-level characteristics of behavior observed in human and monkey 533 
data. Second, due to its generative nature, model simulations provided for not yet seen conditions and 534 
made predictions about the behavior under new control objectives. In the future, our behavioral 535 
analysis can serve as a foundation to classify or parse neural activity in monkeys performing complex 536 
actions where trial averaging is no longer possible. This behavioral analysis holds promise to generate 537 
crucial insights into neural principles of skillful manipulation, not only in monkeys but also, by induction, 538 
in humans.  539 

Methods 540 

Participants and Ethics Statement 541 
18 healthy, right-handed university students (age: 18—25 years; 8 females) with no self-reported 542 
neuromuscular pathology volunteered to take part in the experiments. All participants were naïve to the 543 
purpose of the experiment and provided informed written consent prior to participation. The 544 
experimental paradigm and procedure were approved by the Northeastern University Institutional 545 
Review Board (IRB# 22-02-15). 546 

The data from two adult male Rhesus monkeys (Macaca mulatta) used in this study was taken from a 547 
previously published work (Quick et al., 2018). All animal procedures were approved by the University of 548 
Pittsburgh Institutional Animal Care and Use Committee, in accordance with the guidelines of the US 549 
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Department of Agriculture, the International Association for the Assessment and Accreditation of 550 
Laboratory Animal Care, and the National Institutes of Health. For details of experimental rig and 551 
procedure see the Methods in (Quick et al., 2018). 552 

Critical Stability Task (CST) 553 
The CST involved balancing an unstable cursor displayed on the screen using the movement of the hand 554 
(Jex et al., 1966; Quick et al., 2014, 2018). The CST dynamics was governed by a first-order differential 555 
equation as shown in equation ( 1). The difficulty of the task was manipulated by changing the 556 
parameter 𝜆 : by increasing 𝜆 the task became more unstable, hence more difficult to accomplish. To 557 
perform the task, subjects sat on a sturdy chair behind a small table, with their right hand free to move 558 
above the table (Figure 1). A reflective marker was attached to the subject’s back of the hand on the 559 
third metacarpal, and the hand position was recorded using a 12-camera motion capture system at a 560 
sampling rate of 250Hz (Qualisys, 5+, Goetheburg, SE). The mediolateral component of the hand 561 
position was used to solve the CST dynamics with the initial condition of 𝑥(𝑡 = 0) = 0 (Quick et al., 562 
2018). The calculated cursor position was real-time projected as a small blue disk (diameter: 4mm, 563 
approximately 0.8deg in visual angle) on a large vertical screen in front of the subject at a 150cm 564 
distance. The processing delay of the visual rendering was roughly 50ms.  565 

Experimental Design 566 
Task 567 
At the beginning of the experiment, human subjects held their right hand comfortably above the table 568 
and in front of their right shoulder as shown in Figure 1, where the hand position was mapped to the 569 
center of the screen. The visual display of the cursor and hand position was scaled such that the lateral 570 
hand movements of ±10cm corresponded to ±20deg of visual angle from the screen center and served 571 
as the boundaries of the workspace. Each trial started with the hand position displayed on the screen as 572 
a red cursor (diameter: 4mm, or approximately 0.8deg in visual angle). Subjects were asked to bring the 573 
red cursor to the center of the screen depicted by a small grey box (Figure 1). Once the red cursor was at 574 
the center, and after a delay of 500ms, the trial started. The red cursor disappeared and a blue cursor 575 
representing the 𝑥 position in equation ( 1) appeared at the center. Subjects were instructed to keep (or 576 
‘balance’) the blue cursor within the boundaries of the workspace for 6s for the trial to be considered 577 
successful. If the cursor escaped the workspace at any time, the trial would abort and considered as 578 
failed. Subjects were informed of the outcome of the trial by a message on the screen, reading “Well 579 
Done!” for success, and “Failed!” for failure. The next trial started after an intertrial interval of 1000ms. 580 
This feedback matched the binary reward that monkeys were given in the experiment by Quick and 581 
colleagues. 582 

Experimental Paradigm and Conditions 583 
Each human subject participated in the experiment for three consecutive days. At the beginning of the 584 
first day, subjects were familiarized with the experimental setup and the objectives of the task. 585 
Familiarization consisted of five CST trials with moderate difficulty level. These trials were later excluded 586 
from the analyses. The main experiment consisted of three main phases that were repeated on each 587 
day. The first and second phases of the experiment involved 15 reaction time trials and 10 tracking trials, 588 
respectively (data for reaction time and tracking trials are not reported in this study). Phase three 589 
involved the CST trials, which were performed in three blocks. In Block 1, subjects performed 30 CST 590 
trials, where the difficulty level was determined in each trial using an up-down method: starting from 591 
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𝜆 = 2.5 in the first trial, if subjects succeeded/failed on the current trial, 𝜆 was increased/decreased by 592 Δλ = 0.2 in the next trial. By the end of Block 1, subjects had gradually converged to λ values in which 593 
the success rate was approximately 50%. This value was considered as the critical instability value (Quick 594 
et al., 2018), denoted by λୡ, and was obtained by averaging the λ‘s of the last 5 trials of block 1. 595 

In Block 2, a stepwise increase in λ was adopted: subjects started with a difficulty level of λ = 70% λ௖ 596 
(using λୡ from the previous block). They continued until they completed 10 successful trials, or 20 trials 597 
in total (whichever occurred first). The difficulty level was then increased by Δλ = 0.2, and the 598 
procedure repeated. This incremental increase of λ continued until the subjects’ success rate for the 599 
ongoing λ dropped below 10% (i.e., less than 2 successful trials out of 20). This marked the end of the 600 
second block. In total, subjects performed approximately 120-200 trials in Block 2, depending on the 601 
individual’s performance.  602 

In Block 3, subjects performed the CST under three selected difficulty levels of easy, medium, and hard, 603 
with 20 trials for each difficulty level. These levels corresponded to λ values that led to 75% success rate 604 
(easy), 50% success rate (medium) and 25% success rate (hard) obtained from each individual’s 605 
performance in Block 2. The exact values of λ଻ହ%, λହ଴%, and λଶହ% were calculated by fitting a 606 
psychometric curve to the success rate data from Block 2 as a function of λ (see Figure 2). The order of 607 
difficulty was pseudo-randomly selected for each subject. For this study, we only analyzed the CST data 608 
from Block 2 (stepwise increase in λ) as it matched the procedure used in the monkey experiment (Quick 609 
et al., 2018). Subjects repeated the same experimental procedure on Day 2 and 3. 610 

Three groups of human subjects participated in the experiment, where each group received different 611 
instructions about the task goal. The first group was instructed to perform the CST “without failing to 612 
the best of their ability” (no-instruction group); the second group was instructed to “keep the cursor at 613 
the center of the screen at all times” (Position Control group); and the third group was instructed to 614 
“keep the cursor still anywhere within the bounds of the screen” (velocity control group).   615 

Analysis 616 
To evaluate the overall performance of humans and monkeys during the CST, four quantities were 617 
calculated: success rate, hand-cursor correlation, hand-cursor lag, and hand/cursor gain. For each 618 
individual, the quantities were calculated as the average across trials for each bin of λ values (bin size: 619 
0.3, starting from λ = 1.5). 620 

The success rate was obtained as the percentage of successful trials within each λ bin. A psychometric 621 
curve (a Gaussian cumulative distribution function) was then fitted to the success rate data as a function 622 
of λ to estimate λ௖  (critical stability, where success rate was 50%): 623 % Success = 50 ൤1 − erf ൬𝜆 − λ௖√2𝜎 ൰൨ ( 3) 

 624 

where, ‘erf’ indicates the error function, and 𝜎 denotes the standard deviation of the Gaussian 625 
cumulative. The correlation and lag quantities (Figure 2, B and C) were obtained by first cross-correlating 626 
the hand and cursor trajectories in each trial, and then finding the peak correlation, and the 627 
corresponding lag (Figure 2, see also (Quick et al., 2018)). The hand/cursor gain (Figure 2, D) was defined 628 
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as the ratio of the root mean squared (RMS) value of hand position over the RMS value of the cursor 629 
position in each trial.  630 

Finally, to perform the classification analysis used in Figure 7 and Figure 8, a Support Vector Machine 631 
method was applied to learn the two-class control objective labels. In order to build and train a 632 
classifier, we used ‘fitcsvm.m’ function in MATLAB, where synthetic data (RMS of cursor position and 633 
cursor velocity) was used as training set. To classify experimental data using the trained classifier, the 634 
MATLAB function ‘predict.m’ was used. Finally, the posterior probabilities over each classification (i.e., 635 
the confidence on classification) was calculated using the ‘fitPosterior.m’ function in MATLAB.   636 
 637 
Optimal Feedback Control Model 638 
A generative model approach was used to build control agents that performed the CST with different 639 
control strategies. The model involved an optimal feedback controller that moved the hand, a point 640 
mass of m=1kg, through a simple muscle-like actuator (Todorov, 2005; Todorov & Jordan, 2002).Click or 641 
tap here to enter text. The muscle model was approximated by a first-order low-pass filter that 642 
generated forces on the hand in the lateral direction as in equations ( 4) and ( 5): 643 𝜏𝐹ሶ = −𝐹 + 𝑢 ( 4)𝑝ሷ = 1𝑚 𝐹 ( 5) 

 644 

where 𝐹 is the actuator force acting on the hand, 𝜏 is the time constant of the low-pass filter, 𝑢 is the 645 
control input to the muscle, and 𝑝ሷ  is the second derivative of the hand position. These equations consist 646 
of three states: hand position 𝑝, hand velocity 𝑝ሶ  and muscle force 𝐹. Similarly, by taking first and second 647 
derivatives of equation ( 1), three more states were added to the dynamics of the system: 648 𝑥ሷ = 𝜆(𝑥ሶ + 𝑝ሶ) ( 6)𝑥 = 𝜆(𝑥ሷ + 𝑝ሷ) ( 7)

 649 

By combining equations ( 1) and ( 6) and then ( 6) and ( 7), the CST equation was expanded as follows: 650 𝑥 = 𝜆ଷ𝑥 + 𝜆ଷ𝑝 + 𝜆ଶ𝑝ሶ + 𝜆𝑝ሷ  ( 8)

 651 

The advantage of the higher derivatives of CST dynamics was that it made the cursor position 𝑥, cursor 652 
velocity 𝑥ሶ  and cursor acceleration 𝑥ሷ  available to the controller. Hence, different control strategies that 653 
directly involved these states could be explored. Note that equation ( 8) required that the initial 654 
conditions of both hand and cursor position, velocity and acceleration all satisfied equations ( 6) and ( 655 
7). The dynamics of the system could then be captured by equations ( 4), ( 5) and ( 8), and represented 656 
by the state vector: 𝐱 = [𝑥, 𝑥ሶ , 𝑥ሷ , 𝑝, 𝑝ሶ , 𝐹]. By adding additive signal-independent noise 𝝃௧, as well as 657 
multiplicative signal-dependent noise 𝜀௧𝐶, the full dynamics of the system could be presented in state-658 
space format: 659 𝐱௧ାଵ = 𝐴𝐱௧ + 𝐵(1 + 𝜀௧𝐶)𝑢௧ + 𝝃௧ ( 9)
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 660 

where 𝜀௧ and 𝝃௧  were zero-mean Gaussian noise terms, 𝐶 was the signal-dependent noise scalar, and A 661 
and B represent the dynamics of the system: 662 

𝐴 =
⎣⎢⎢
⎢⎢⎡

0 1 0 0 0 00 0 1 0 0 0𝜆ଷ 0 0 𝜆ଷ 𝜆ଶ 𝜆0 0 0 0 1 00 0 0 0 0 10 0 0 0 0 −1/𝜏⎦⎥⎥
⎥⎥⎤ 

 𝐵 = [0 0 0 0 0 1/(𝜏𝑀)]்
( 10) 

 

 663 

Noisy sensory feedback 𝒚௧ was given as:  664 𝒚௧ = 𝐻𝒙௧ + 𝝎௧  ( 11)

 665 

where 𝝎௧  was a zero-mean additive Gaussian noise, and matrix H determined the available sensory 666 
feedback from the vector of states. For our simulations, the feedback included the cursor position 𝑥 and 667 
velocity 𝑥ሶ , therefore, H was defined as: 𝐻 = [1,1,0,0,0,0]. An optimal controller determined the motor 668 
command 𝑢௧to minimize the cost function 𝐽 as follows (Todorov, 2005): 669 𝑢௧ = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝐽) 𝐽 =  ෍൫𝐱௧் 𝑸𝐱௧ + 𝑢௧் 𝑅𝑢௧൯௡

௧ୀଵ  
( 12) 

 670 

where 𝑛 was the number of time samples throughout the movement, and 𝑸 and 𝑅 determined the 671 
contribution of accuracy and effort cost, respectively. In all simulations, 𝑅 = 1. The matrix 𝑸, however, 672 
was appropriately manipulated to implement different state-dependent control strategies as discussed 673 
below. 674 

Position Control 675 
The aim of the Position Control strategy was to maintain the cursor at the center of the screen 676 
throughout the trial. This was implemented by penalizing the deviation of the cursor position 𝑥 from the 677 
center. In this case, the matrix 𝑸 was set to 𝑸 = diag([𝑞, 1, 1,1,1,1]), where 𝑞 ≫ 1 was a constant. As 678 
such, the cost of deviation from the center for the cursor position was dominant represented in the 679 
value 𝐽 of the cost function, making the regulation of cursor position at the center the primary goal of 680 
control.  681 

Velocity Control 682 
The Velocity Control strategy aimed to keep the cursor still at any point within the boundaries of the 683 
workspace. In this case, upon deviation of the cursor from the center, the main goal was to bring the 684 
cursor to a stop regardless of the location. This was implemented through penalizing the cursor velocity 685 𝑥ሶ  by setting the matrix 𝑸 = diag([1, 𝑣, 1,1,1,1]), where 𝑣 ≫ 1 was a constant.  686 
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Simulations 687 
Given a control strategy, the model was used to generate 500 trials of CST for each level of task difficulty 688 
from 𝜆 = 1.5 to 𝜆 = 7, with increments of ∆𝜆 = 0.2. The parameters of the hand and the muscle model 689 
( 4)( 5) were fixed to 𝑚 = 1kg and 𝜏 = 0.06s. A sensory delay of 50ms was considered when simulating 690 
the task with the optimal feedback controller (Todorov, 2005). The signal-dependent noise terms were 691 
set to 𝜀௧~𝑁(0,1), and 𝐶 = 1.5. The motor noise was 𝝃௧~𝑁(𝟎, 𝚺), where 𝚺 = 0.4 𝐵𝐵். For each trial, 692 
the simulation started from the initial condition of 𝐱 = 𝟎, and ran for 8s. Only the first 6s of each 693 
simulation were considered in the analysis for consistency with the experimental paradigm. The success 694 
or failure in each simulated trial was decided post hoc, by determining whether the cursor position 𝑥 695 
exceeded the limits of the workspace (±10cm from the center) within the 6s duration of the trial.  696 
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