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Abstract— Tactile sensing has been increasingly utilized in ro-
bot control of unknown objects to infer physical properties and
optimize manipulation. However, there is limited understanding
about the contribution of different sensory modalities during
interactive perception in complex interaction both in robots
and in humans. This study investigated the effect of visual and
haptic information on humans’ exploratory interactions with
a ‘cup of coffee’, an object with nonlinear internal dynamics.
Subjects were instructed to rhythmically transport a virtual
cup with a rolling ball inside between two targets at a specified
frequency, using a robotic interface. The cup and targets were
displayed on a screen, and force feedback from the cup-and-
ball dynamics was provided via the robotic manipulandum.
Subjects were encouraged to explore and prepare the dynamics
by “shaking” the cup-and-ball system to find the best initial
conditions prior to the task. Two groups of subjects received the
full haptic feedback about the cup-and-ball movement during
the task; however, for one group the ball movement was visually
occluded. Visual information about the ball movement had two
distinctive effects on the performance: it reduced preparation
time needed to understand the dynamics and, importantly, it
led to simpler, more linear input-output interactions between
hand and object. The results highlight how visual and haptic in-
formation regarding nonlinear internal dynamics have distinct
roles for the interactive perception of complex objects.

I. INTRODUCTION

When a child shakes a present before opening it on Christmas
morning, they can quickly guess what they received. Humans
exhibit exquisite skill in perceiving objects through explor-
atory interactions [1]. This includes rattling boxes to gauge
their contents, or squeezing fruits to feel their ripeness. This
human ability of interactive perception, i.e., using forceful
interactions with an object to gain information, has recently
received substantial attention in the robotics community [2].

Interactive perception of non-rigid objects with internal
degrees of freedom, such as sloshing liquids in containers, is
of paramount interest to robotics [3]–[7]. Recent approaches
in robotic manipulation have leveraged this interactive ap-
proach to both obtain information about the object and
then to subsequently manipulate it [8]–[10]. However, visual
information processing is extremely costly and the integ-
ration of different sensory information in robotic systems
presents major computational challenges. Therefore, most
control policies have relied exclusively on haptic or tactile
signals to infer properties of the objects. For example, when
grasping different rigid and non-rigid objects, tactile inform-
ation was shown to enable successful manipulation [8]. Yet,
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we conjecture, integrating multiple streams of information
could potentially lead to more informed control schemes.

Advances in robotics have been inspired by human re-
search showing that information obtained through explor-
atory actions improves manipulation strategies [11], [12].
Humans routinely integrate haptic, acoustic and visual in-
formation for successful manipulation but each of these
information sources may have differing impacts on behavior.
Although it has been understood that humans are ‘vision-
dominant’ [13], studies on manipulation have emphasized
the intricate interplay of haptic and visual information [14].
However, these studies have focused on how humans reach to
or handle rigid objects without complex internal dynamics.
Only two previous studies on the manipulation of a linear
mass spring examined the role of haptic information and
reported that it is necessary for dexterous performance [15],
[16]. How humans use both visual and haptic information
to explore and manipulate objects with nonlinear internal
dynamics, e.g., a cup of coffee, is still unknown. As robots
aim to dexterously manipulate complex objects, it is useful
to understand how humans interactively perceive and utilize
different information channels for manipulation.

This experimental study is the first to investigate how
different sensory modalities affect humans’ ability to gain
information about an object with nonlinear internal dynamics
through interactive perception. In previous research, Sternad
and colleagues have examined human control of an object
with nonlinear internal dynamics inspired by ‘carrying a cup
of coffee’ [17]–[22]. Using a virtual environment, subjects
interacted with a cup-and-ball system, visualized on a screen,
via a robotic manipulandum that moved the cup and also
provided haptic feedback about the internal ball forces back
to the user’s hand. The dynamics of the cup-and-ball can
evolve into complex and potentially chaotic behavior. Studies
have found that during interaction humans aim to make cup-
and-ball dynamics simpler, i.e., more predictable. A recent
study by Nayeem et al. investigated how humans explored
and prepared this system prior to a continuous rhythmic
transport task [23], [24]. Results showed that subjects in-
teractively prepared the object for the upcoming task: by
’jiggling’ the system back and forth, they learned which
initial states resulted in shorter transients to reach a more
predictable steady state faster.

Using the same experimental paradigm, this paper ex-
plored how visual and haptic information about the in-
ternal dynamics affected subjects’ exploration strategies,
i.e., their interactive perceptual strategies. Two experimental
conditions were implemented in a virtual environment: the
first condition presented full haptic and visual feedback;



Fig. 1. A. Experimental task inspired by transporting a cup of coffee,
simplified to a cup with a ball sliding inside. B. Mechanical model of cart-
pendulum system. C. Participant holding the robot handle to move the cup
while viewing the system on a screen. Inset shows the subject’s grip of
the robot handle. D. Display in the Full Information condition, inset shows
definition of the ball angle. E. Display for the Hidden Dynamics condition.

the second condition occluded visual information about the
ball dynamics. Subjects’ interactive perceptual actions were
quantified by their ability to converge to a control strategy
that minimized transients and reached a steady state faster.
Results showed that without visual information about internal
dynamics, subjects required more time for exploration and
excited the system with a wider range of frequencies, yet
were less likely to find the optimal solution.

II. METHODS
A. Experimental Task, Apparatus, and Data Acquisition
Subjects interacted with a ‘cup of coffee’ simulated in a
virtual environment. Simulating a 3D cup with sloshing
coffee would be computationally expensive and was not a
viable option for real-time virtual rendering. Therefore, the
task was simplified to transporting a 2D semicircular cup
moving on a horizontal line with a ball sliding inside the
cup (Fig.1). Since the ball was sliding instead of rolling,
the system was mechanically equivalent to a cart sliding
on frictionless line with a suspended frictionless pendulum.
The pendulum bob was represented by the ball, and the cup
position corresponded to the cart position. The arc of the
cup corresponded to the rotational path of the pendular bob,
i.e., ball (Fig.1). While simplified, the task retained the basic
challenges of transporting a cup of coffee: underactuation
and nonlinear internal dynamics. The equations of motion
for the system are:

(mc +mb)Ẍ = mbl[θ̇
2sinθ − θ̈cosθ]︸ ︷︷ ︸

Fball

+Finter (1)

θ̈ = −Ẍ

l
cosθ − g

l
sinθ. (2)

Finter is the force applied by the human hand on the cup. X
and θ are cup position and ball angle, respectively. The ball
angle when at the bottom of the cup defined 0deg; clockwise
direction was negative. Fball denotes the force that the ball
exerts on the cup. Parameters used to simulate the system
were: cup mass mc=2.4kg, ball mass mb=1.0kg, pendulum
length l=0.45m, and gravitational acceleration g. The values

were chosen to be heavy enough for the subjects to feel Fball

upon their hand, but light enough to avoid fatigue.
Subjects interacted with the virtual cup-and-ball via a

robotic manipulandum capable of haptic force feedback
(HapticMaster, Fig.1C) [25]. The cup was shown as a yellow
arc and a small white circle rolling inside represented the
ball. The subject grasped the robot handle to control the
displacement of the cup, X , shown on a screen 2m in
front of them. The robot was admittance-controlled: the
subject’s force, Finter, on the manipulandum resulted in cup
displacement, according to Eqs. (1-2). A custom-written C++
program based on the HapticAPI computed the cup and ball
kinematics that then controlled the cup and ball on the visual
display. The ball force Fball was haptically fed back to the
subject’s hand at 120Hz update rate. Corresponding to the
horizontal cup movement, the movement of the robot handle
was also restricted to a horizontal line. Two blue rectangular
target boxes delimited the cup’s peak-to-peak amplitude for
the instructed back-and-forth movements (Fig.1D). The cup’s
rim was at ±50deg; the ball could not ‘escape’ from the cup,
but if it exceeded ±50deg, it would rotate above the cup rim.

B. Experimental Conditions and Task Instructions
Two groups of 9 healthy college-aged subjects each per-
formed one of the following two conditions: in the Full
Information condition subjects interacted with the simulated
cup and ball, while receiving full visual and haptic feedback
(Fig.1D). In the Hidden Dynamics condition a yellow rect-
angle covered the system. Subjects were unaware they were
manipulating a cup with a ball rolling inside (Fig.1E). Only
the Fball acting upon their hand via the manipulandum would
provide haptic information to infer the object’s dynamics.

At the start of each trial, the cup was positioned in Box
A with the ball at rest (0deg). Subjects were instructed to
move the cup in rhythmic fashion between Box A and Box
B (0.3m apart) for 15s paced by an auditory metronome that
was set to 0.60Hz (Fig.1C). Prior to starting the prescribed
rhythmic movement, subjects were encouraged to explore
and prepare the cup-and-ball dynamics by ‘jiggling’ the cup.
This interactive preparation interval was not limited in time,
but the cup motions were constrained to the left half of the
screen (Fig.1D). They were told find a preparation strategy
that would allow them to complete the prescribed rhythmic
task to the best of their ability. Once subjects felt ready,
they moved the cup towards Box B (0.15m) and continued
moving rhythmically between the two boxes (Fig.2A) at a
pace of 0.60Hz. The metronome began when the participant
reached Box B for the first time. The experiment consisted
of 120 trials for each condition, which lasted 40 minutes.
All subjects gave written informed consent, as approved by
the Institutional Review Board of Northeastern University.
De-indentified data is publicly available online [26].

C. Performance Metrics
The effects of interactive perception were first assessed by
the initial ball states that participants adopted before starting
the rhythmic task. The duration of the transients in each
trial measured how quickly subjects reached a steady state,



Fig. 2. A. Time series of cup and ball position and velocity for all trials
of an example subject in Full Information condition. Early trials are in dark
blue, later trials are in green. IC indicates initial conditions, defined as the
state variables when cup velocity was zero prior to reaching Box B for the
first time. Trials are aligned by this point, defined as time 0. B. Calculation
of transient duration. When relative phase between cup and ball phase was
less than 27deg, the end of the transient and start of steady stat was defined.

and therefore more predictable dynamics [23], [24]. These
two metrics served as an indicator of how well subjects had
inferred the object’s dynamics via preparatory activity. To
further examine whether the two experimental conditions
(Full Information and Hidden Dynamics) elicited different
preparatory activity, the frequency components in the pre-
paration interval were also analyzed. In addition, system
identification was applied to characterize the activity serving
interactive perception. All calculations were performed in
Matlab (Mathworks, v.29b, Natick MA).

1) Initial Conditions: Initial conditions θ0 and θ̇0 were
determined at the instance when the subject started the cup
movement towards Box B (0.15m), i.e., the final zero cup
velocity before reaching Box B (Fig.2A). The states that
defined the system’s initial conditions were ball angle θ0 and
ball velocity θ̇0; cup position X0 was not included in further
analyses as it was the at the center of Box A. Movements
before this time point were considered preparation.

2) Transient Duration: As the rhythmic cup movement
began, the cup-and-ball system exhibited a transient prior
to reaching a steady state. To calculate the duration of
this transient, the steady state for the system had to be
defined first. For rhythmic cup movements at the metronome
frequency of 0.60Hz, the cup and ball position were in phase
(Fig.2B). To compute the end of the transient and start of
the steady state, the instantaneous phase of the cup and

ball position were calculated using Hilbert transform [27].
Relative phase between cup and ball, the difference between
the two phase signals, served to indicate when the system
entered a steady state. A relative phase less than 27deg (15%
percent of ±180deg) for the rest of the trial marked the end
of the transient and the start of steady state [23], [24]. The
time between the initial conditions and start of steady state
defined the transient duration.

Given the known dynamics of the system, forward dy-
namic simulations were run to evaluate which initial condi-
tions led to shorter transients. These simulations required an
input force to the cup-and-ball system, i.e., a controller. As
a simple choice, the control input was the desired rhythmic
cup trajectory Xdes(t) = (A/2)sin(2πft + π/2)) coupled
to a hand impedance, i.e., a linear spring K in parallel with
a damper B [23], [24], [28]. The equations of motion of the
coupled model include (1)-(2) with Finter expressed as:

Finter = −K(X −Xdes)−B(Ẋ − Ẋdes) (3)

The hand impedance acted as a proportional derivative con-
troller that reduced any divergence of X(t) from Xdes(t)
due to ball forces Fball [19]. Stiffness K and damping B
were constants; their respective values were estimated from
each experimental trial using an optimization method [19],
[23], [24]. For the forward simulations, the mean constant
values were used: K= 40N/m and B= 20Ns/m. To evaluate
the effect of initial ball states on the transient duration, the
cup-and-ball system was forward-simulated for different θ0
(±90deg, 1deg step size) and θ̇0 (±150deg, 1deg step size)
to produce a heat map of transient durations.

3) Preparation Interval: Participants had no time limit
for their preparatory interactions, hence the duration of
this interval was also informative. The preparation interval
was the time between the start of the trial to the point
where initial conditions were determined. To characterize
preparatory activity, cup position was parsed into cycles
and their frequencies determined. All frequencies of a trial
were pooled across subjects and binned into 0.02Hz bins.
The frequencies were binned into 10 trial intervals and
summarized in a time-frequency plot which showed the
changes in preparation cup frequencies across practice.

System identification methods were used to characterize
input-output behavior during preparation. Linearizing Eqs.1-
2 around the pendulum’s downward position, a 4rd-order
transfer function described the system dynamics with inter-
action force as an input and cup position as an output. There-
fore, a 4rd-order linear transfer function was fit between
interaction force (input) and cup position (output), using
tfest.m (Mathworks, v.29b; [29]–[31]). 30 trials were used
as the system identification needed to be adequately trained.
This tested if subjects linearized dynamic behavior during
preparation. To check sensitivity to parameters, functions of
3rd- and 5th-order were also fitted. Specifically, each transfer
function was fit between the timeseries of the interaction
force and cup position for the first and last 30 trials of each
individual to assess if there was a change in preparation
activity with practice. The fitting error was calculated as the



Fig. 3. A. Initial ball angles for Full Information averaged across subjects
for each trial; shading indicates one standard deviation. B. Initial ball
velocity for Full Information. C. Initial ball angle for Hidden Dynamics.
D. Initial ball velocity for Hidden Dynamics.

Fig. 4. A. Average transient duration across subjects over trials in Full
Information; shading indicates one standard deviation. B. Average transient
duration across subjects over trials in Hidden Dynamics condition. C Heat
map of simulated transient durations for different initial ball angles and
velocities for 0.6 Hz frequency in Full Information. Experimental data are
overlaid, with center denoted by the star. D. Same heat map as in C. with
experimental data from Hidden Dynamics overlaid; center of data denoted
by the star.

mean squared error (MSE) between experimental output (cup
position) and the model estimation for the corresponding
input (interaction force).

4) Statistical Analyses: The performance metrics (initial
conditions, transient duration, duration of the preparation
interval) showed approximately exponential trends across
trials. Therefore, the averaged data was fit with exponential
functions, and the time constant τ indicated the rate of
convergence to the final value; R2 specified the goodness of
fit. As initial ball velocity exhibited poor fits to exponential
functions (R2 < 0.10), linear functions were used. For
each metric, the difference between early (first 5 trials) and
late (last 5 trials) performance within groups was compared
using paired t-tests. Unpaired t-tests quantified the differ-
ences across groups. For all tests p < 0.05 was considered

significant. Finally, to identify differences in the quality of
fit from the system identification procedure, a regression
analysis (general linear model) was used with model order,
early-late, feedback conditions and subject as fixed factors
[32]. All individual trials were fed into the regression model.

III. RESULTS

Subjects in both Full Information and Hidden Dynamics
conditions performed the rhythmic task as instructed at the
metronome frequency of 0.60Hz and with an amplitude
conform with the distance between the target boxes (0.30m).
There was no apparent change in amplitude or frequency
over the 120 trials. The average frequencies and standard
deviations across trials and subjects were 0.59±0.001Hz and
0.60±0.012Hz in the two conditions. The average movement
amplitudes were: 0.32±0.003m, and 0.31±0.003m.
A. Initial Conditions
In the Full Information condition, the initial ball angle θ0
clearly converged to preferred values with practice, while
initial ball velocity decreased linearly θ̇0 (Fig. 3A,B). The
exponential and linear fits are shown by solid black lines.
The colored data denote the mean and one standard deviation
for each trial number across 9 subjects. The average ball
angle θ0 decreased with a time constant τ=7.11 trials to an
asymptote of −23deg. Average values in the first 5 trials
dropped from −6.64± 13.27deg to −21.59± 7.17deg in the
last 5 trials, (t(8)=2.8, p=0.02). Ball velocity θ̇0 declined
linearly with a slope −0.29 deg/s·trial and an intercept
−10deg/s; there was also a significant difference between
the first 5 trials (−13.49 ± 28.64deg/s) to the last 5 trials
(−44.57± 33.64deg/s); t(8)=2.75, p=0.02; Fig. 3.

Subjects in the Hidden Dynamics group were not aware
that they were moving a cup with a ball inside, as it
was occluded by a solid rectangle (see Fig.1E). However,
Fball acted on the hand via the robot handle. Subjects
converged to a preferred θ0, despite being deprived of visual
information about the ball. The average θ0 values declined
exponentially, with τ = 19.89; convergence to the final
value of −20deg was slower in this group (Fig. 3C). The
initial ball angle averaged across the first 5 trials changed
from −7.45 ± 10.59deg to −20.66 ± 9.66deg in the last
5 trials (t(8)=2.47, p = 0.04). The final θ0 in the Full
Information and Hidden Dynamics were not significantly
different (t(16)=−0.28, p=0.79). For the Hidden Dynamics
group, θ̇0 was highly variable and showed no significant trend
across the experiment (Fig. 3D). Values in the first 5 trials
were 7.29± 20.51deg/s and 0.18± 42.66deg/s in the last 5
trials (t(8)=0.40, p=0.69). Initial ball velocity in the last 5
trials between Full Information and Hidden Dynamics were
significantly different (t(16)=−2.53, p=0.02).
B. Transients
Following the convergence to preferred initial states, it was
expected that transient durations would decrease with prac-
tice. The average transient durations across all subjects in the
Full Information condition declined with a decay constant of
τ = 26.06 trials to an asymptote of 2.76s, Fig.4A. In the first
5 trials the average duration was 12.04 ± 2.38s decreasing



to 3.62 ± 1.43s by the last 5 trials (t(8)=9.57, p=1.73 ·
10−08). Subjects with Hidden Dynamics also shortened their
transients with a similar time constant of τ = 21.14 trials
to a final value of 5.49s (Fig.4B). The average duration in
the first 5 trials, 11.24 ± 2.55s, decreased to 6.88 ± 3.67s
by the last 5 trials (t(8)=3.07, p=0.006). However, transient
durations with Hidden Dynamics were not shortened to the
same degree as with Full Information. The values achieved
in the last 5 trials were significantly different in the two
conditions (t(16)=2.94, p=0.009).

To evaluate the effect of the initial conditions of cup and
ball on the transients, we used the simple control model
to simulate the cup-and-ball dynamics. The objective was
to compare which of the two perceptual conditions were
closer to achieving optimal preparation. Fig.4C,D both show
the same heat map of simulated transient duration for a
range of initial ball angles θ0 and initial ball velocities θ̇0.
Yellow areas indicate initial ball states that produced the
shortest transients in simulation. As illustrated, the range of
initial ball states that produced transient durations < 0.1s
were between −26.97deg and −18.38deg (θ0) and between
−157.13deg/s and −65.46deg/s (θ̇0). The center was at
θ0=−22.67deg and θ̇0=−111.3deg/s.

All experimental data from the Full Information and
Hidden Dynamics conditions were overlaid onto the same
simulated landscape (Fig.4C,D respectively). Subjects with
visual and haptic feedback chose θ0, θ̇0 that produced transi-
ents close to the optimum in simulation. The cyan star shows
the center of the data at θ0=−22.17deg and θ̇0=−27.68deg/s.
Subjects without visual feedback were further away from
the optimal states. The center of the data, shown by the red
star, was at θ0=−17.57deg and θ̇0=−3.43deg. These results
indicate that if only provided haptic information about the
internal dynamics, subjects could find a mapping between
initial states and simplified dynamic behavior. However, for
convergence to the global solution, subjects also required
visual information about the internal dynamics. To under-
stand why the preferred initial states differed between the
two groups, the preparatory activity was analyzed further.
C. Characterization of Preparatory Activity
One indicator of whether the preparatory activity changed
with practice was the duration of the preparation interval
(Fig.5A,B). The duration in the Full Information condition
was 17.69 ± 10.61s on average in the first 5 trials and
decreased to 5.76 ± 5.04s in the last 5 trials (t(8)=3.34,
p=0.008; Fig.5A). The time constant of an exponential
function fit was τ=16.09. Subjects in the Hidden Dynamics
condition required more trials to converge to a final value
τ=48.41 (Fig.5B), but their preparation interval duration also
decreased significantly from 23.42± 13.46s to 5.40± 1.80s
(t(8)=3.88, p=0.004).

Cycle-by-cycle frequencies during the preparation interval,
summarized as histograms in Fig.5C,D, revealed that in
both conditions, subjects initially explored a wide array
of frequencies from 0.50-0.80Hz. Across trials, subjects
narrowed this range to frequencies around 0.60Hz, coincident
with the subsequent metronome frequency. It is notable that

Fig. 5. A. Duration of preparation interval over trials in the Full Information
condition, averaged across subjects per trial. B. Duration of preparation
interval over trials in the Hidden Dynamics condition, averaged across
subjects per trial.C. Histograms of individual cycle frequencies visited
during the preparation interval in Full Information. Yellow indicates high
occurrence of a frequency. D. Histograms of individual cycle frequencies
visited during the preparation interval in Hidden Dynamics.

this distribution was slightly wider in Hidden Dynamics.
This small but visible difference in ‘jiggling’ frequen-

cies motivated further analysis using system identification.
Fig.6A,B illustrates timeseries of interaction forces and the
resulting cup positions for all trials in the preparation in-
terval for two example subjects. The subject in the Hidden
Dynamics condition exhibited more variability in preparation
frequencies than the subject in Full Information. To capture
the specific dynamic behavior, system identification methods
were applied to fit 3rd-, 4th- and 5th-order linear transfer
functions to the data. Goodness of fit quantified by the
MSE values are summarized in Fig.6C. The averaged MSE
fits to training data across subjects from the first 30 and
last 30 trials for the three transfer functions are shown.
Regression analyses found a significant difference between
the two experimental conditions (p < 0.001), and between
early and late practice (p < 0.001). In Full Information, the
decrease in MSE from early to late training was significant
(t(16) > 2.5, p < 0.03, for all orders of linear fits),
demonstrating that subjects learned to simplify or linearize
their dynamic behavior in the preparation interval (Fig.6C).
In contrast, in the Hidden Dynamics condition, the change in
MSE values from early to late practice was not significant
and indicated that subjects did not learn to produce more
linearized input-output behavior (t(16) < 1.49, p > 0.17,
for all orders of linear fits). Comparison between the MSE
values in early stage of training between the two conditions
showed no significant difference (t(16) < 0.86, p > 0.4,
for all orders of linear fits). However, comparison of values
in later trials showed that MSE values in Full Information
were significantly lower than those in Hidden Dynamics
(t(16) > 2.1, p < 0.05 for all orders of linear fits). Subjects
in the Hidden Dynamics condition excited complex dynamic



Fig. 6. A. Input-output behavior (interaction force to cup position) of all
trials of one subject during the preparation interval with Full Information.
Early trials are in dark blue, late trials are in green. B.. Input-output behavior
during the preparation interval of one subject in the Hidden Dynamics
condition. C. Mean square error (MSE) of early and late trials in fitting 3
different linear functions for Full Information (left) and Hidden Dynamics
(right).

modes and could not linearize dynamics, and therefore could
not simplify behavior.

IV. DISCUSSION

This paper investigated the effect of visual and haptic inform-
ation in humans when exploring and preparing a complex
object for a transport task. Examples for the challenges
that manipulation of complex objects pose abound, both for
humans and robotic systems, ranging from opening a box
with unknown contents to carrying a cup filled with liquid
without spilling [33], [34]. This study compared interactive
strategies to identify the effect of visual and haptic feedback
about the internal dynamics. With full visual and haptic
information, subjects successfully explored the system’s
dynamics to converge relatively quickly to optimal initial
conditions for the task. Transients significantly decreased as
a consequence and subjects reached a steady state faster.
Without visual information, convergence to initial conditions
was less optimal and transients did not decrease to the same
degree. Analysis of preparation activity revealed that with
unrestricted information, subjects achieved linear mappings
between interaction forces and the resulting cup position.

Perhaps the most striking difference between the two
conditions was their transient durations (Fig.4A,B). Shorter
transients and, hence, longer steady state behavior is de-
sirable, as in steady state the system exhibits predictable

dynamics. This is likely the result of different preparatory
actions as the length of the preparation interval differed
accordingly. Multi-modal sensory feedback not only aided
the identification of object dynamics, but also facilitated
learning of simpler control strategies. Subjects with unrestric-
ted information were able to simplify preparatory behavior of
the cup-and-ball by eliciting linear dynamics. This finding is
in line with existing human movement studies, which showed
that augmenting visual feedback with haptic information in
a ball bouncing task enhanced subjects’ learning of open-
loop stable control strategies [35], [36]. Furthermore, we
believe that the dual role of haptic feedback, in carrying both
information and mechanical power, may have enhanced the
perception and learning of interaction dynamics. Leveraging
this feature of haptic feedback may be useful for robotic
applications and warrants further investigation.

Subjects without visual information about the internal
dynamics did not converge to a preferred initial ball velocity
(Fig.3D). While not a singular contributor to performance,
this absence of convergence to a specific value indicated that
subjects were not able to estimate ball velocity solely using
force feedback. This result showed that different sensors can
observe different states. For a robotic task, when full state
observability is crucial, a multi-modal sensory stream would
be advantageous.

In the absence of vision, the decline in the duration of the
preparation interval was also much slower (5A,B). This was
accompanied by a similarly slow convergence of the range
of frequencies employed in the preparation interval (5C,D)
implying that without visual information, subjects demanded
more interactions with the object to identify its properties
and dynamics. With an eye to robotics, a multi-modal sens-
ory stream could potentially facilitate more efficient object
property estimation and learning of a manipulation skill. This
could lead to more agile robots in manufacturing, military
and healthcare settings.

In robotics the vast majority of approaches that model
learning through object interaction have only used one mode
of data: either visual or tactile feedback [37]–[43]. However,
the results presented here highlight the importance of equip-
ping a learning system with multiple sensory modalities.
There is no one sensor, whether visual or haptic, that alone is
adequate for learning the dynamics of an object. The integra-
tion of multi-modal data facilitates more efficient and robust
interactive perception. From a robot control perspective, this
has its own challenges given the heterogeneous nature of
the data and their different dimensions, frequencies, and
characteristics. Therefore, more investigation is warranted.

This study only investigated the visual and haptic sensory
modalities. Yet, humans incorporate an even richer array
of sensory modalities including proprioception, vestibular,
auditory and olfactory feedback. In robotics, it would be
useful to explore the value of adding a wider set of modalities
to go beyond vision and tactile sensing, such as auditory and
pressure sensors. For future work, we would like to expand
our set of experimental conditions to investigate the effects
of a wider range of sensory modalities and their integration.
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