
Identifying the control priorities of monkeys and humans in a virtual balancing task 

Summary: Primate neurophysiology has provided numerous insights into the neural mechanisms of short and 
stereotypical movements, such as center-out reaching, which are mainly guided by feedforward control. 
However, to understand highly interactive and feedback-driven behaviors, experimental paradigms are 
needed that involve continuous interactions with the world. One example of such paradigms is stick-balancing 
which requires constant integration of feedback for successful control. Recently, a simplified virtual 
implementation of the stick-balancing task was developed as the Critical Stability Task (CST), where monkeys 
and humans learned to balance an unstable system in a virtual environment. However, the control strategies 
to accomplish the task, as well as its neural underpinnings, remains to be examined. In theory, the task could 
be performed based on various control policies by prioritizing either the control of position or velocity of the 
system. This distinction, however, is particularly challenging to identify in the data as the unstable nature of 
the task leads to unique behavior at each attempt, with potentially different control policies at different trials. 
These variations render trial-averaging methods unsuitable as they fail to capture trial-specific control 
strategies. Here, we propose a generative-model approach at the level of behavior that successfully accounts 
for the behavioral features of monkeys and humans who performed the task under matching conditions. The 
model makes further predictions about the effect of different control strategies on how the task could be 
accomplished. These predictions were used to identify, at the single-trial level, the control priorities most 
likely used by monkeys and humans in each trial. These results provide a critical step towards understanding 
the neural activity associated with highly interactive sensorimotor behavior, and how such activity might 
represent different control priorities in the motor system. 

Task and data: The Critical stability task (CST) involved balancing an unstable system, displayed as a cursor on 

the screen, using the hand movement. The dynamics of the system was governed by a first-order differential 

equation, �̇� = 𝜆(𝑥 + 𝑝), where x and p represented the cursor position and the hand position, respectively 

(Fig.1A). The movement trajectories of the hand and cursor are shown for two example trials in Fig.1B. The 

difficulty of the task was manipulated by changing the constant 𝜆: larger 𝜆 meant higher level of difficulty. The 

trial was considered successful if the cursor remained within the bounds of the workspace (±5cm from the 

center) for six consecutive seconds. Behavioral data from two monkeys ([1]) and four human subjects was 

collected under matching conditions. Each human subject performed the task in three sessions of ~80 trials for 

different levels of task difficulty.   

 
Fig. 1: A. The Critical Stability Task. B. The time course of cursor and hand position during two example trials of a 
monkey, for easy (top) and hard (bottom) levels of difficulty. C. A generative model based on optimal feedback control 
theory was developed to assess different control strategies underlying the behavior. 

 
Fig. 2: Simulated trials based on position control (left) and velocity control (right) strategies. 



Modelling and Results: We developed a model based on Optimal Feedback Control theory (OFC; [2]) that was 
adapted to perform the CST. The model received cursor position and cursor velocity as sensory feedback, and 
given the control policy, generated appropriate “hand” movement to accomplish the task. Two main control 
policies were examined: position control (bringing the cursor to the center of the screen), and velocity control 
(keeping the cursor still regardless of its position).   
The model generated similar behavior to experimental 
data for both position- and velocity-based control 
strategies as exemplified in Fig. 2. Furthermore, the 
main features of behavior were successfully captured 
at the average level of performance for both humans 
and monkeys. As shown in Fig. 3, the model accounted 
for success rate, hand-cursor correlation, and the 
sensorimotor lag between hand and cursor movement 
as a function of task difficulty (𝜆). Importantly, the 
qualitative distinction between position and velocity-
based control policy depicted by the model (Fig. 2) 
could also be identified in the experimental data. Fig. 
4A illustrates example trials of two human subjects, 
where one exhibits patterns similar to position control 
policy (S1), while the other’s behavior resembles that 
of a velocity control strategy. In Fig. 4B, the model 
makes distinct predictions about the joint distribution 
of cursor position and cursor velocity during the task 
for each control policy. By taking the average position 
and average velocity of the cursor for each trial, the 
model predicts a large correlation between these 
quantities under a velocity-based control (cyan), but 
not under a position-based control (yellow). The 
behavior shown for subjects S1 and S2 are each 
consistent, respectively, with position and velocity-
based control as suggested by the model. Similar 
distinction is observed for the distribution of the 
cursor RMS during each trial (Fig. 4B, bottom panels). 

Conclusion: Our results present a powerful tool to 
identify different control policies used by humans and 
monkeys to accomplish a virtual balancing task.  This is 
a critical step towards analyzing the neural activity 
associated with highly interactive sensorimotor 
behavior and investigating how such activity might 
represent different control priorities. 
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Fig. 3: The model accounts for the success rate, hand-cursor 
correlation, and hand-cursor lag observed in monkey and 
human data as a function of task difficulty (𝜆). 

 

 
Fig. 4: A. Sample trials of two human subjects. B. Joint 
distribution of cursor position and cursor velocity for the 
mean (top) and RMS of the cursor time series. Each data-
point is one trial. The model predicts separate distributions 
for position vs. velocity-based control strategies.  

 


