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Abstract: We propose a real-time optimal controller that will reduce fuel 
consumption in a series hybrid electric vehicle (HEV). This real-time drive 
cycle-independent controller is designed using a control-oriented model and 
Pontryagin’s minimum principle for an off-line optimisation problem, and is 
shown to be optimal in real-time applications. Like other proposed controllers 
in the literature, this controller still requires some information about future 
driving conditions, but the amount of information is reduced. Although the 
controller design procedure explained here is based on a series HEV with 
NiMH battery as the electric energy storage, the same procedure can be used to 
find the supervisory controller for a series HEV with an ultra-capacitor. To 
evaluate the performance of the model-based controller, it is coupled to a  
high-fidelity series HEV model that includes physics-based component models 
and low-level controllers. The simulation results show that the simplified 
control-oriented model is accurate enough in predicting real vehicle behaviour, 
and final fuel consumption can be reduced using the model-based controller. 
Such a reduction in HEVs fuel consumption will significantly contribute to 
nationwide fuel saving. 
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1 Introduction 

Electric vehicles (EVs) show strong potential to be the major form of transportation in the 
future, but the automotive industry is facing difficulties in developing EVs. High price 
and limited drive range are the major drawbacks of these vehicles. Improving battery and 
fuel cell technologies will overcome these drawbacks. For now, as a short-term solution 
for the problems of fuel consumption and emissions by conventional vehicles, hybrid 
electric vehicles (HEVs) are among the best candidates. They still rely on fossil fuel and 
internal combustion engines, but for the following reasons, they can help in reducing fuel 
consumption and emissions: 

1 it is possible to use smaller (and more efficient) engines due to the assistance of 
electrical propulsion systems 

2 HEV electrical storage can be charged using an external source (in plug-in HEVs), 
therefore reducing fuel consumption 

3 the presence of an electrical path in the powertrain allows the vehicle to capture part 
of its kinetic energy during braking 

4 extra degrees of freedom in the powertrain allow the engine to work at higher 
efficiency points. 

The last two points are especially important as there should be an accurate plan (the so 
called supervisory controller in the literature) to determine the proper amount of power to 
be generated by either of the two onboard sources. The plan should command each 
component in such a way that the fuel consumption and/or emission is minimised when 
the driver command is met and physical constraints of the system are not violated. In the 
early stages of the development of HEVs, rule-based supervisory controllers were used; 
these plans, although simple to implement, do not necessarily result in optimal behaviour, 
and are difficult to tune. Studies show that a 3% reduction in HEVs fuel consumption will 
help to save 6.5 million gallons of gas annually in the USA (Gonder, 2008). Therefore, 
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model-based controllers have become more popular in recent years (Sciarretta and 
Guzzella, 2007). Application of model-based controllers is widely studied in the 
literature, and numerous methods have been presented to find the optimal supervisory 
controller. 

Among these model-based controllers are brute-force numerical methods that give the 
global optimal solution to the problem. Dynamic programming (Serrao et al., 2011; Ngo 
et al., 2010; Musardo et al., 2005; Lin et al., 2003; Boyali and Guvenc, 2010), particle 
swarm optimisation (PSO) (Lin et al., 2010), and genetic algorithm (GA) (Piccolo et al., 
2001) are examples of such methods. These methods are not readily applicable for 
control applications because of their non-causal nature that requires a priori knowledge of 
the driver command for the whole mission. They are also computationally expensive and 
are optimal only for the drive cycle upon which they are developed. Thus, more 
applicable solutions such as stochastic dynamic programming (SDP) (Li et al., 2007; Lin 
et al., 2004), game theory (GT) (Chin and Jafari, 2010; Dextreit et al., 2008; Soltis and 
Chen, 2003), and model predictive control (MPC) (Borhan et al., 2010; Taghavipour  
et al., in press; Sampathnarayanan et al., 2009) are used for real-time control. With these 
methods, causal near-optimal controllers are developed that can be used in real time. 
They still require some information about future driving condition, but can compensate 
for different conditions and provide sub-optimal yet satisfactory results (Taghavipour  
et al., in press). These methods are still computationally costly and require special 
approaches to reduce the computational time. An example of such an approach is the 
combination of analytical and numerical methods (Ngo et al., 2010). 

Pontryagin’s minimum principle (PMP), as a branch of optimal control theory, has 
been proven useful in this application (Serrao et al., 2011; Ngo et al., 2010; Musardo  
et al., 2005; Lin et al., 2003, 2004, 2010; Boyali and Guvenc, 2010; Piccolo et al., 2001; 
Li et al., 2007; Chin and Jafari, 2010; Dextreit et al., 2008; Soltis and Chen, 2003; 
Borhan et al., 2010; Taghavipour et al., in press; Sampathnarayanan et al., 2009; Kim  
et al., 2011a, 2011b; Cipollone and Sciarretta, 2006; Serrao and Rizzoni, 2008). It 
reduces the integral optimisation over the whole drive cycle to an instantaneous 
minimisation of the Hamiltonian (Geering, 2007), which in turn is reduced to the tuning 
of only a few parameters (Kim et al., 2011a, 2011b; Cipollone and Sciarretta, 2006; 
Serrao and Rizzoni, 2008; Stockar et al., 2010). In one degree-of-freedom HEVs (series 
and parallel architectures for example), only one parameter needs to be tuned based on 
the driving condition. 

The equivalence consumption minimisation strategy (ECMS) is another promising 
method (Serrao et al., 2011; Musardo et al., 2005; Ambuhl and Guzzella, 2009; Serrao  
et al., 2009; Sciarretta et al., 2004). In ECMS, the battery power is interpreted as an 
imaginary fuel consumption rate. The battery power is converted to fuel consumption 
using an equivalence factor, S. Then the optimal control, u*, is chosen so that the total 
fuel consumption rate in (1) is minimised. 

{ }* arg min batteryu m P= + S  (1) 

In this relation,  and batterym PS  are the actual and the imaginary fuel consumption rates, 
respectively. It has been shown that if the value of the equivalence factor is chosen 
properly, the outcome of the ECMS is optimal (Serrao et al., 2011; Serrao et al., 2009). In 
these cases, the total fuel consumption in (1) is similar to the Hamiltonian introduced by  
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the PMP, and the equivalence factor is tightly related to the costates (Lagrange 
multipliers). Thus, the optimal behaviour of the controller is based on finding an optimal 
equivalence factor. 

The main contributions of this paper include a simple but mathematically optimal 
feedback controller as the supervisory controller, as well as a way to tune the controller 
parameters based on certain information about future driving conditions. Although the 
latter does not remove the necessity for information about future driving conditions, it 
reduces the amount of information required, and still gives near-optimal results. Like all 
other model-based controllers, this controller is based on a simplified control-oriented 
model; hence, the validation process is of great importance. In this work, the performance 
of the designed controller is evaluated by applying it to a high-fidelity physics-based 
HEV model (Dao et al., 2010, 2011) developed in the MapleSim environment. 

The organisation of this paper is as follows. In Section 2, the simple model upon 
which the controller is built is discussed. Next, Section 3 defines the optimisation 
problem and presents the solution. Sections 4 and 5 provide details of the real-time 
optimal controller and the tuning method. Section 6 generalises the solution to series 
HEVs with an ultra-capacitor (UC). The discussion about the high-fidelity model and 
low-level controllers is presented in Sections 7 and 8. Results and discussions conclude 
the paper. 

2 Control-oriented model 

The mathematical representation of the hybrid powertrain is the core of the model-based 
controller design. It is essential that this control-oriented model be simple enough so that 
the computation time remains within real-time requirements. At the same time, this 
model should be able to represent the vehicle accurately enough to capture important 
characteristics of the powertrain. 

In this work, a series HEV is studied (Figure 1). For designing the controller, a 
backward quasi-static model for the powertrain is used to calculate the required power 
based on the vehicle’s velocity. This power is then used as the input to the optimisation 
problem. 

Figure 1 Schematic of a series HEV 
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The longitudinal vehicle dynamics is modelled as (2). 

( )sin( )v x T D R vm a f f f m g γ= − + +  (2) 

To find the power demand, (3) is used with fD and fR, defined in (4) and (5), respectively. 

( )sin( )d x T x v x D R vP v f v m a f f m g γ= = + + +  (3) 

21
2D x Df ρv AC=  (4) 

cos( )R v rrf m g γ f=  (5) 

In the above equations, mv is the vehicle mass; vx and ax are the longitudinal velocity and 
acceleration respectively; fT is the traction force, resulting from the torque on the wheels; 
fD is the aerodynamic drag force; fR is the equivalent rolling resistance of all wheels, frr is 
the rolling resistance coefficient, and the term mvgsin(γ) is the resistive force due to the 
slope of the road, γ. ρ, A, and CD are air mass density, vehicle frontal area, and drag 
coefficient, respectively. Numerical values for all the parameters used in this study are 
presented in Table 1. 

Table 1 Parameters used in the simulations 

Parameter Value Parameter Value 

mv 1,600 kg maxgenP  50 kW 

α 4.16e-5 g/s/W Q 23.18 × 103 C 

β 0.007 g R 0.3 Ω 
frr 0.01 Voc 212.6 V 

ρ 1.15 kg/m3 SoCmax 0.7 

A 2.31 m2 SoCmin 0.5 

Cd 0.32 SoCref 0.6 

maxbP  27 kW ηm 0.96 

minbP  –40 kW g 9.8 m/s2 

To model the hybrid powertrain, quasi-static models of each component are used (Serrao 
and Rizzoni, 2008). The following sub-sections present the model of each component. 

2.1 Nickel metal hydride battery 

As a simple realisation for control purposes, a circuit model can be used for the battery 
modelling (Figure 2). In HEV applications, the battery works in a narrow window of state 
of charge (SoC), typically between 50% to 70%. Therefore, the change in the battery 
voltage (Voc) is negligible, and Voc can be considered constant. Figure 3 shows the 
simulation results for an accurate chemistry-based NiMH battery model (Dao et al., 
2010), which justifies the assumption of constant Voc for this simple model. 
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Figure 2 Battery circuit model 

 

Figure 3 Simulation results for the open circuit voltage versus the SoC in a NiMH battery 

 

Source: Dao and McPhee (2011) 

Considering Q as the battery capacity and i as the current passing through it, the 
derivative of SoC can be written as: 

. iSoC
Q

= −  (6) 

The negative sign in (6) states that a positive current discharges the battery, and a 
negative current charges it. For the simple model of Figure 2 the battery terminal power, 
Pb, is found using (7). 

2
b ocP iV Ri= −  (7) 

In the above relation, Voc is the battery open circuit voltage, and R is the total of internal 
and terminal resistances of the battery. 

By substituting i from (7) into (6), the time derivative of the SoC becomes: 

2. 4
2

oc oc bV V RPSoC
RQ

− + −
=  (8) 

In this HEV model, the only state is the battery SoC. The control parameter is chosen to 
be the battery power, thus: 
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Δx SoC=  (9a) 
Δ

bu P=  (9b) 

2 4
2

oc ocV V Rux
RQ

− + −
=  (9c) 

2.2 Engine-generator 

One of the major advantages of the series HEV architecture is that the engine is not 
mechanically connected to the driveline. Instead, it is coupled to a generator, allowing the 
engine speed to be chosen arbitrarily so that the engine works in the minimum brake 
specific fuel consumption (BSFC) point for every output power. If this minimum fuel 
consumption rate is plotted versus the generator output power, the outcome is a linear 
relation. Figure 4 shows the simulation results conducted on a mean-value engine model 
(Saeedi, 2010) coupled to a permanent magnet DC generator. In such conditions, the fuel 
consumption rate can be approximated as 

genm P= +α β  (10) 

with α and β being constants. 

Figure 4 Simulation results for the minimal fuel consumption rate versus generator power 

 

2.3 Electric motor 

One or more electric machines are responsible to drive the wheels. These machines can 
be modelled as power transducers that convert the electrical power to mechanical power 
and vice versa. Losses in the driveline and the motors can be modelled with a single 
efficiency using (11). It is also assumed that only a fraction of the kinetic energy (50% in 
this study) is restored during regenerative braking. It should be noted that this assumption 
does not have any effect on the general behaviour of the vehicle. 

( )

1 0
1 0
2

e d m d

e d m d

P P η P

P P η P

−= >⎧
⎪
⎨

= <⎪⎩

 (11) 
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In this equation, ηm is the total efficiency of the driveline from the electric motor to the 
wheels. Comparisons made between this simple model and a high-fidelity HEV model 
showed that a constant value of η can be accurate enough for control purposes. 

2.4 Electrical bus 

The electric bus consists of the power electronic drivers for the motor and the generator. 
Neglecting losses, the balance of the energy in the electric bus can be written as: 

gen b eP P P+ =  (12) 

In this relation, the positive values indicate that the power is flowing from the powertrain 
toward the wheels, and the negative sign shows that the power is reversed. It is obvious 
that the generator power cannot be negative. 

Although this model is very simple, with only one state, it will be shown that this 
model is capable of providing enough accuracy for the purpose of the model-based 
control. 

3 Optimal control problem 

The goal of the supervisory controller in this study is to minimise fuel consumption. 
Therefore, a cost function of the form (13) is considered. 

0

ft
J mdt= ∫  (13) 

By combining (7), (9), (10), (11), and (12) with (13), the cost function can be written as: 

( )[ ]
0

ft
eJ P u dt= − +∫ α β  (14) 

The physical constraints of this powertrain are 

min maxx x x< <  (15a) 

min maxb b bP P P< <  (15b) 

max0 gen genP P< <  (15c) 

It is possible to write (15b) and (15c) as a single constraint on the control by combining 
them with (12) and (7). Therefore, the constraints on the control would be 

{ }min maxmin max ,b e genu P P P= −  (16a) 

max

2

max min , ,
4

oc
b e

Vu P P
R

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (16b) 

min maxu u u< <  (16c) 
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The optimal control problem can now be defined as follows: Find the optimal control, u, 
such that the cost function (14) is minimised while the constraints (17) are satisfied. 

2 4
2

oc ocV V Rux
RQ

− + −
=  (17a) 

( )(0) (charge sustaining condition)f refx x t x= =  (17b) 

[ ]min max, ,x x x∈ =X X  (17c) 

[ ]min max, ,u u u∈ =U U  (17d) 

This is a deterministic optimisation problem, since it is assumed that the input (electrical 
power demand Pe) is known for all t ∈ [0, tf]. To solve this problem, the Hamiltonian is 
defined according to (18). 

( )[ ]
2 4

2
oc oc

e
V V RuH P u λ

RQ

⎛ ⎞− + −
= − + + ⎜ ⎟⎜ ⎟

⎝ ⎠
α β  (18) 

In this definition, λ is the Lagrange multiplier or the costate, with its dynamics defined by 
(19). 

Hλ
x

∂
= −

∂
 (19) 

Since none of the battery parameters (Voc, R, and Q) is assumed to be a function of the 
state, the costate derivative is zero, and the costate holds its initial value to the end of the 
mission. 

0λ =  (20) 

PMP converts the integral minimisation of (14) to an instantaneous minimisation of the 
Hamiltonian, and states that the optimal control is the one that satisfies (21). 

* arg min { }uu H∈= U  (21) 

The solution to this problem is the solution of a two-point-boundary-value (TPBV) 
problem, as the initial and final state values are specified but the initial (and constant) 
costate value is unknown. The shooting method is a relatively fast and simple method for 
this TPBV problem, in which the unknown initial conditions are guessed and the 
differential equations are integrated to the final time. If the final values found are close 
enough to the specified values, the solution has been reached. Otherwise, the initial guess 
is changed and the whole process is repeated until the final criterion is met within the 
desired tolerance. 

For this method, a discrete-time version of dynamic equations is considered as in 
(22). 

2 4 [ ]
[ 1] [ ]

2
oc ocV V Ru k

x k x k
RQ

− + −
+ = +  (22) 
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The costate, λ, is the value to be guessed in this problem. At each step of integration, and 
with known values of x[k] and λ, the control range [umin, umax] is identified. In this range, 
the value of u that minimises the Hamiltonian is chosen as the optimal control value, 
u*[k]. Then with this value, (22) is integrated (forward Euler integrator) to the next step. 
This solution continues to the final time, when x(tf) is found. If x(tf) ≠ xref, the guess for 
the costate is modified and the whole process is repeated until x(tf) is close enough to xref . 

Solving for the correct value of the costate is therefore a lower level optimisation 
problem: find the costate, λ, in such a way that (x(tf) – xref)2 is minimised. This problem 
can easily be solved using available software packages such as the optimisation toolbox 
in Matlab. 

Since at each time the control value is chosen from the range [umin, umax], the control 
constraint is essentially satisfied. However, considering the state inequality constraint 
(17c) is a more challenging process. This constraint can be written as the inequality  
G(x, t) < 0, with G defined as: 

( )( )min max– –G x x x x=  (23) 

Whenever this constraint is active (i.e., G ≥ 0), the necessary conditions in the PMP must 
be slightly altered. In such a case, the optimal control value is identified as: 

[ ]{ }*
min maxarg min { }, , 0uu H μG u u G∈= + = =U U  (24) 

where μ is a positive number, and G  is the time derivative of G: 

( ) ( ) ( )max min min max– – 2 – –G x x x x x x x x x x= + =  (25) 

0 0 0 {0}G x u= ⇒ = ⇒ = ⇒ =U  (26) 

Therefore, the optimal control, u*, is zero in active constraint regions. The details and 
proof of this method are available in Geering (2007, Section 2.5). 

This method can be explained heuristically; whenever the SoC (x) reaches its 
boundaries, the battery cannot be charged (or discharged), and the admissible control is 
zero to prevent it from being over-charged (over-discharged). 

4 Optimal feedback control 

At every time step, the value of the control in [umin, umax] that minimises the Hamiltonian 
is chosen as the optimal value. Since at each time step the state, the costate, and the 
power [x, λ and Pe in (18)] have certain values, the Hamiltonian takes a convex form in 
terms of the control, u. 

2

2– –
2 – 4oc

H λ R
u RQ V Ru

∂ ⎡ ⎤= + ⎢ ⎥∂ ⎣ ⎦
α  (27) 

( )

2

32
2 2

– 0
2 1

– 4oc

H λR
u Q

V Ru
= >

∂
∂

 (28) 



   

 

   

   
 

   

   

 

   

   270 R.S. Razavian et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

2
Δ 2

2 2

10 –
4 oc

H λu V
u R Q

∂ ⎛ ⎞
= ⇒ = ⎜ ⎟∂ ⎝ ⎠α

 (29) 

In (29), it can be seen that the Hamiltonian has only one extremum at .u  For stable 
shooting method solutions, the costate has to be negative, thus, the second derivative in 
(28) will be positive, resulting in a convex function. It is worth noting that by using the 
shooting method, the global optimality of the solution is guaranteed. That is because 
there is only one solution candidate, and if the choice of the costate satisfies the final 
boundary conditions, the solution is unique, thus globally optimal. 

Figure 5 Hamiltonian versus control, u 

   
 (a) (b) (c) 

The quadratic form of the Hamiltonian also implies that the minimum of H happens 

either at a boundary value of u (namely umin or umax), or when H
u

∂
∂

 is zero, (29). These 

conditions are shown in Figure 5. According to (30), u  has a constant value throughout a 
mission. 

2 2

1– (2 ) 0
2

du λλ
dt R Q

= =
α

 (30) 

In fact, u  is the governing parameter in this problem, and can be found by (29), using 
only battery parameters and the costate value. Therefore, a simple yet optimal feedback 
controller can be defined as: 

max max
*

min max

min min

u u u
u u u u u

u u u

<⎧
⎪= < <⎨
⎪ <⎩

 (31) 

with umin, umax and u  defined in (16a), (16b) and (29), respectively. The inputs to this 
controller are the state (as feedback) and Pe, and the controller determines the optimal 
battery power. 

The mechanism of the optimal control can be simply explained. When the electric 
power demand is negative (during braking) and the SoC is within the admissible range,  
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the battery absorbs all the available power. When the power demand is positive, but less 
than a certain value ( ),u  the battery provides all the required power. These two 
conditions correspond to the first case in (31), and are shown in Figure 6(a). When the 
power demand is more than ,u  only a portion of the required power is delivered by the 
battery, and the rest is provided by the generator. This condition corresponds to the 
second case of (31), and is shown in Figure 6(b). Finally, if the power demand is too high 
(when minu u>  or equivalently ,max ),e genP P u> +  the battery provides more power than 
u  to drive the vehicle. This corresponds to the last case in (31), and is shown in  
Figure 6(c). When the SoC is less than its minimum allowable value, the battery will not 
provide any power, and when SoC is more than its maximum allowable value, it will not 
absorb electrical power. 

Figure 6 The mechanism of the optimal supervisory controller 

 

   
 (a) (b) (c) 

As was mentioned earlier, the most important parameter in this controller is the costate 
(which in turn determines ).u  In the next section, a simple method is presented to find 
the proper value of the costate and .u  

5 Costate estimation method 

For optimal behaviour, it is necessary to have the future driving condition. Without such 
information, only sub-optimal behaviour is achievable (Sciarretta and Guzzella, 2007). In 
this study, it was observed that it is not necessary to consider the whole drive cycle. 
Instead, if only the driving condition until the next stop [stop-to-stop (STS) cycle] is 
known, it is possible to obtain a solution that is almost as optimal as the solution found 
considering the whole drive cycle. An example is presented in Figure 7, with the FTP75 
drive cycle shown in the top plot, and the SoC shown in the bottom plot for two different 
control strategies. To obtain these results, the PMP was solved once for the full drive 
cycle, and once for successive STS cycles when the final state was required to be xref  
at the end of each STS cycle. A comparison of the resultant fuel consumption for  
various drive cycles is presented in Table 2, which shows negligible difference in fuel 
consumption between full drive cycle and STS cycle optimisation. 
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Figure 7 State trajectory when considering the full drive cycle, and when considering STS cycles 

 

Table 2 Fuel consumption for the two methods 

 FTP75 HUDDS EUDC NYCC LA92 

Full drive cycle (gr/cycle) 274.8 154.4 257.5 31.69 308.5 
STS cycles (gr/cycle) 275.1 154.6 257.6 31.89 308.8 
Increase in fuel consumption 0.10% 0.12% 0.04% 0.63% 0.10% 

The costate value is the only parameter that should be tuned for these STS cycles. Since 
the optimal control mechanism is independent of the driving condition, it is only the 
charge sustenance that should be considered in tuning the costate. 

The mechanism mentioned earlier follows one important concept: it tries to capture as 
much negative energy as possible, thus elevating the SoC. To discharge the battery to its 
initial charge level, the controller decides that a certain amount of power has to be 
provided by the battery during acceleration and cruising. This certain amount is u  found 
in (29). 

It should be noted that in both solutions shown in Figure 7, the mechanism of the 
optimal controller is the same, as is the amount of regenerative braking absorbed by the 
battery. The only cause for the change in fuel consumption is the small change in battery 
losses. When the whole drive cycle is considered, the optimal control adjusts u  so that 
the battery losses are minimised over the whole mission. But when the STS cycles are 
considered separately, the controller changes u  for each cycle, thereby increasing the 
charge/discharge rate of the battery, the battery loss, and finally, the total fuel 
consumption. It was observed that by changing battery parameters (so that the battery 
efficiency is decreased), the difference in fuel consumption between the two methods 
becomes more noticeable. However, with reasonable battery parameters, the difference is 
small, as in Table 2. 

The objective is now to estimate the costate (or equivalently )u  for each of the STS 
cycles to satisfy charge sustenance. A typical plot of electric power demand, Pe, and the 
corresponding battery power, u, is shown in Figure 8. To have the SoC at the same level 
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at the beginning and end of the cycle, the total change in the battery energy (the integral 
of the shaded area) must be zero, i.e.: 

0n pE E+ =  (32) 

where En represents the total negative energy absorbed by the battery, and Ep is the total 
energy delivered to the powertrain by the battery. 

Figure 8 A typical plot of electric power 

 

As was observed in simulations of different standard drive cycles, u  has a relatively 
small value (usually less than 5 kW). In most of the times when the power demand is 
positive, it is greater than ;u  thus the optimal battery power is equal to u  in a great 
portion of the drive time. Therefore, it is reasonable to assume the battery power is equal 
to ,u  which leads to 

p

p

t

E udt tpu= ∫  (33) 

In (33), tp is the time when power demand is positive. Combining (33) and (32) gives 

– n

p

Eu
t

=  (34) 

If the relations (29) and (34) are considered together, the value of the costate that satisfies 
charge sustenance requirements, λ*, can be found as in (35). 

*2
2 * 2

2 2
–4  – 4 n

oc oc
p

λ ERu V λ aQ V R
a Q t

⎛ ⎞
+ = ⇒ = + ⎜ ⎟

⎝ ⎠
 (35) 

Relations (34) and (35) relate the optimal values of λ and u  to only two parameters of 
the drive cycle: the total negative energy available and the time when positive power is 
required. During the simulations, it was observed that the optimal value of u  is 
independent of the order of events. For example, it is not necessary to know when the 
driver is going to push the brake pedal; it is only important to know how much kinetic 
energy is going to be transferred to electrical energy before the next stop. This behaviour 
can be justified by (34), which is only a function of total energy and time. 

In equation (32), it is assumed that the final SoC should come back to its initial level. 
If (due to any kind of error) the initial SoC has a value different from the desired SoCref, 
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then the feedback controller tries to bring it back to the initial value, not SoCref. To 
compensate for this error, the difference in the battery energy should be considered as in 

n p resE E E+ =  (36) 

with Eres being the amount of energy that the battery should absorb or release. Eres can be 
estimated using (39) by assuming constant Voc. 

[ ]
0

( )
refSoC

res oc
SoC

E Q dSoC V SoC= ∫  (37) 

0

refSOC
res oc

SoC
E QV dSoC∫  (38) 

Δres ocE QV SoC  (39) 

Therefore, u  and λ can more robustly be approximated using: 

–– n res

p

E Eu
t

=  (40) 

( )( )* 2
0

4– – –oc n ref oc
p

Rλ aQ V E Q x x V
t

= +  (41) 

As mentioned in Section 1, the ECMS can be optimised using the PMP approach. In this 
case, the equivalence factor is tightly related to the costate. Therefore, it is possible to 
find the optimal value of the equivalence factor at each instant using the costate found by 
the method presented in this paper. 

Although the costate estimation method still requires certain information about future 
driving conditions, it is a less demanding problem than finding the exact speed profile. It 
is possible to estimate cruise times using ITS and GPS systems; the available negative 
energy is related to vehicle kinetic energy during braking, which can also be estimated 
using the longitudinal vehicle dynamics (Barth et al., 2003). 

6 Comments regarding use of ultra-capacitor in HEVs 

An ultra-capacitor (UC) can be a good option for an HEV electrical energy storage 
system, as it has higher efficiency and power-density, and much longer lifetime compared 
to NiMH and Li-ion batteries. In contrast, an UC’s relatively low energy-density, and 
internal energy dissipation make it inappropriate for EV and PHEV applications (Burke, 
2007). 

UCs can be modelled using RC circuits [Figure 9(a)], and the number of the RC 
branches determines the accuracy of the model (Shi and Crow, 2008). Since increasing 
the number of the branches increases the number of the states of the system, a simple RC 
circuit is suitable for the control-oriented model [Figure 9(b)]. This model can still 
capture enough details about the UC behaviour. For such a model, the relationship 
between the capacitance voltage, VC, and the current, i, can be written as 
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–C
iV
C

=  (42) 

with C being the capacitance. Considering the capacitance voltage as the state of the 
system and the current as the control, the state equation is found to be according to (43). 

– ux
C

=  (43) 

Equation (44) defines the UC output power, PUC, in terms of the state and the control. 
2–UCP ux Ru=  (44) 

In the above relation, R is the UC equivalent resistance. 

Figure 9 UC circuit model 

  
(a) (b) 

Based on this modified HEV model, the new cost function and Hamiltonian can be 
written as in (45) and (46), respectively (Razavian et al., 2012). 

( )2
0

–
ft

eJ P xu Ru dt⎡ ⎤= + +⎣ ⎦∫ α β  (45) 

( )2– –e
uH P xu Ru λ
C

⎛ ⎞⎡ ⎤= + + + ⎜ ⎟⎣ ⎦ ⎝ ⎠
α β  (46) 

The costate is no longer constant, and is governed by the dynamic equation: 

– Hλ u
x

∂
= =

∂
α  (47) 

When using an UC, similar to the case that a NiMH battery was used, the Hamiltonian 
takes a convex form (in the UC case, it is quadratic). Therefore, the arguments regarding 
uniqueness and global optimality of the solution are still valid. Moreover, u  (the control 
value at which the Hamiltonian has a zero derivative) is a constant value: 

1 1
2 2

du dx dλ
dt R dt R C dt

= +
α

 (48) 

1 1– ( ) 0
2 2

u u
R C R C
⎛ ⎞= + =⎜ ⎟
⎝ ⎠

α
α

 (49) 
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Therefore, the optimal supervisory controller has the same logic, except the fact that the 
governing parameter, ,u  is the UC current, not the power. The optimal UC current is 
always the maximum possible current, umax, except when it is higher than ,u  in which 
case the optimal UC current is .u  Finally, the same method can be used to estimate the 
costate initial value and ,u  based on the same information (i.e., cruise time and 
regenerative energy). 

7 High-fidelity model 

The controller and the methods presented in the previous sections were based upon a very 
simple HEV model. Because of extensive simplification, this control-oriented model  
may fail to accurately represent the actual behaviour of the vehicle. To evaluate the 
performance of the designed controller, the first step is model-in-the-loop (MIL) 
simulation. In MIL simulations, a high fidelity model is used to emulate vehicular 
behaviour. 

In this work, the series HEV is modelled in the MapleSim environment (Dao et al., 
2010). MapleSim allows a causal modelling, and does symbolic calculations to reduce 
run times. The MapleSim model is presented in Figure 10. As can be seen, the model 
consists of different components, including the engine, the generator, the battery, the 
electric motor, and a multi-body vehicle. 

Figure 10 High-fidelity model for a series HEV in the MapleSim environment (see online version 
for colours) 

 

7.1 Engine-generator set model 

This model uses a mean-value engine model (Saeedi, 2010), which is accurate enough for 
this application and also is simple enough to allow fast simulations. The engine model, as 
can be seen in Figure 10, consists of four components: the ECU, throttle, manifold, and 
engine body. The ECU block is responsible for adjusting the throttle angle to make the 
engine deliver the desired amount of torque. In the throttle and manifold blocks, the 
pressure and mass flow rate of the air/fuel mixture are calculated: 

( )–g m
m thr e

m

R T
P m m

V
=  (50) 
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where Pm is the pressure of the air/fuel mixture, Tm and Vm are the temperature and 
volume of the intake manifold, respectively, Rg is the gas constant, and  and thr em m  are 
throttle mass flow rate and manifold out flow respectively. 

Having the mass flow rate and pressure calculated, the engine body block calculates 
the thermal efficiency and indicated power. Finally, the engine output power is found 
according to: 

– –net ind loss loadP P P P=  (51) 

with Pind, Ploss, and Pload being the indicated power, lost power, and internal load power, 
respectively. 

The engine flywheel is coupled to a permanent magnet DC generator that produces 
electricity to charge the battery. The effects of power electronics in the generator electric 
drive are neglected in this model. It is assumed that the electric drive is a DC-DC 
converter with an efficiency of 100%. The schematic of the power converter is shown in 
Figure 11. In this system, the power drawn from (or delivered to) terminal 2 is equal to 
the amount of power at terminal 1. The PID controller ensures that this power is 
independent of variations in terminal voltage due to changes in generator conditions. 

Figure 11 Schematic of the DC/DC converter 

 

7.2 Battery model 

One of the most important components in a hybrid powertrain is the electrical storage. In 
the model developed here, a chemistry-based NiMH battery (Dao and McPhee, 2011) is 
used to further enhance the accuracy of the simulations. In this model, cell terminal 
voltage is calculated using: 

( ) ( )–  cell c c a a cell intv η η i R= + + +φ φ  (52) 

where vcell is the terminal voltage, and φi and ηi are the electromotive force and  
over-voltage, respectively, which are found based on chemical reactions and ion 
concentrations in the anode (a) and cathode (c). Rint is the ohmic internal resistance, and 
icell is the cell current found using: 

cell i i i ii A a l j=  (53) 

where Ai, ai and li are the geometry parameters. ji is defined in (54), with F and T being 
the Faraday constant and temperature, respectively. i0,i is also calculated based on the ion 
concentration at electrodes. 
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( )0.5 –0.5

0,
i i

F Fη η
RT RTi ij i e e= −  (54) 

In (53) and (54), subscript i should be replaced with c for cathode and a for anode. 

7.3 Vehicle dynamics 

For the electric motor, which is responsible for driving the wheels, a permanent magnet 
DC machine is used. Similar to the generator, the effects of power electronics in the 
motor electric drive are neglected. The output shaft of this motor is connected to the 
wheels via a constant gear ratio. 

The vehicle dynamics is simulated by a 14 degree-of-freedom (DOF) multi-body 
model with Fiala tyres and aerodynamic drag force. The degrees of freedom include six 
DOFs for the body, four DOFs for vertical displacement of the sprung mass, and four 
DOFs for rotation of the wheels. This model is sufficient to predict the handling and 
braking behaviors of a vehicle. The aerodynamic drag force is simulated using an 
external load acting on the vehicle’s centre of mass, and is calculated using (4) and the 
vehicle’s longitudinal velocity. 

To couple the designed supervisory controller to this high-fidelity model, different 
components of the model are converted to the Matlab/Simulink environment as  
S-functions, and are connected together by Simulink signal links. The converted model in 
Simulink is no longer an acausal model, since different powertrain components are 
connected together by causal Simulink signal links. The next section presents the 
overview of the control loop and the way the supervisory controller interacts with other 
components. 

8 Low-level controllers 

The schematic of the converted model can be seen in Figure 12. The vehicle dynamics 
and the electric motor components from MapleSim are converted together as the new 
vehicle dynamics block in Figure 12. The driver model is a simple PID controller that 
adjusts the motor current to ensure that the vehicle follows the desired speed profile. The 
outputs of the vehicle dynamics block are the electric power required to follow the speed 
profile, Pe, and the vehicle speed, which is monitored and used as a feedback for the PID 
controller. This electric power (consumed by the electric motor or generated during 
braking) is used as an input to the supervisory controller. It is also used as a signal to 
determine the charge/discharge rate of the battery. 

8.1 Engine-generator set controllers 

The supervisory controller uses the future traffic information as an input to calculate the 
optimal battery power, and in this study, it is assumed that such information is available 
in advance for the current STS cycle. Based on the traffic information, instantaneous 
electric power demand, Pe, and SoC, the supervisory controller can determine the optimal 
battery power using the logic presented in previous sections. Then the controller uses (55) 
to calculate the amount of power that the engine-generator set should produce. As long as 
the low-level controllers for the engine-generator set provide appropriate tracking of the 
set points, tracking of the optimal battery power is guaranteed: 
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* *–gen e bP P P=  (55) 

Based on the reference generator power calculated by the supervisory controller, a pair 
consisting of the torque and speed is identified to give the maximum efficiency of the 
engine-generator set in that output power. The curves shown in Figure 13 are found by 
simulating the mean-value engine model, and are used to find the optimal speed and 
torque based on the generator power. Because of the engine’s non-linear behaviour, a 
sliding mode controller is used to control the engine torque by adjusting the throttle 
angle. 

Figure 12 Schematic of the causal HEV model used in the control loop 

 

Figure 13 Optimal engine torque and generator speed versus generator output power 

  
(a)     (b) 

Sliding mode control has proven to be a reliable method for engine torque management in 
practical cases. This is a model-based method, and is capable of handling the model 
uncertainties. The main control input for the engine is throttle angle. Other inputs, like air 
fuel ratio and ignition timing, highly affect the transient behaviour of the engine. 
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According to legislation to have the best fuel economy and emission for the engine, we 
are not allowed to change these two parameters away from their optimum values for a 
long time (Lamberson, 2003). Therefore, throttle angle is generally more reliable and 
dominating engine input to change the steady state response in this case. 

Engine torque management can be done in two ways. The first approach is using  
an engine torque sensor to measure crankshaft torque for feedback control. This 
measurement includes the effects of the engine combustion torque, friction torque, 
pumping torque, and all accessory loads. In this derivation, spark timing and air fuel ratio 
are used to control the engine torque. Using these two variables as the inputs, forces them 
away from the optimal ranges, as mentioned above. Thus, torque control is not a 
legitimate option for the torque management strategy, but it would reduce uncertainties 
especially in case of engine aging. 

The second approach is to measure and control manifold pressure. Engine combustion 
torque is a function of cylinder air flow which is a function of the manifold pressure. 
Assuming constant air to fuel ratio and ignition timing, the control goal can be changed to 
make the manifold pressure follow the desired value. If the throttle is used to control 
manifold pressure, the effect of ignition timing and air to fuel ratio on combustion torque 
does affect the throttle control. Thus, the disadvantage of this approach is a larger amount 
of calibration required to get a proper conversion from desired torque to desired manifold 
pressure for all engine operating conditions. But, use of this strategy will not require a 
torque sensor (Lamberson, 2003). 

Here we use the manifold pressure control approach and ignore the effect of transient 
torque change for the engine set points so we keep the spark timing and air fuel ratio 
unchanged throughout the simulation. 

To accomplish this goal, we need a simple model of the engine to be used for 
designing the sliding mode controller. A simplified model of the engine is a single input 
single output. The manifold pressure, Pm, is the only state variable and engine indicated 
torque is the output: 

( )–
60

engeng

v cyl d g m
m m D th

eng m m

BA

η N V ω R T
P P C MA PRI A

N V V
= + × ×  (56a) 

–
60

eng

i v cyl d f
ind m

eng g m

C

η η N V H
T P

N R T
=

φ
 (56b) 

where Ath is the throttle area, the control input. Throttle area can be found from th throttle 
angle, θ, and geometry (d and D are diameter values for input and output vents and θ0 is 
the angle when throttle is totally closed): 
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 (57) 
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In (56), ηv is the volumetric efficiency which is a function of manifold pressure and 
engine speed, ω. Ncyl is the number of cylinders (four in this case). Vd and Vm are the 
engine displacement and air manifold volume respectively. Neng is 2 for a four-stroke 
engine. Rg is the gas constant, and Tm is the manifold temperature (considered constant 
for simplicity). CD is the throttle discharge coefficient. 

Also, 0 0gMA P R T=  where P0 and T0 are atmosphere pressure and temperature, 
respectively, and PRI is a non-dimensional value to consider subsonic and supersonic air 
flow (γ is air heat capacity ratio): 
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 (58) 

Lastly, ηi, φ and Hf are engine thermal efficiency (approximately a function of  
engine speed and manifold pressure), stoichiometry fuel-air ratio and gasoline heat of 
combustion, respectively. Readers are referred to Saeedi (2010) for numeric values of the 
parameters used in this engine model. 

According to Slotine and Li (1991), we can define a sliding surface, S: 

, ,– –m m desired m m desiredS P P S P P= ⇒ =  (59) 

where Pm,desired is the desired manifold pressure which leads to the desired engine 
indicated torque. Therefore, S  can be found as in (60) 

,– ind desired
eng m eng th

eng

TS A P B A
C

= +  (60) 

where Aeng, Beng, and Ceng are defined in (56). 
In order to satisfy reachability condition, we use the signum (sgn) function: 

0 – ( )SS S ηsgn S< ⇒ =  (61) 

Now all we have to do is to tune η according to the model uncertainty and operating 
conditions. Then the control input will be: 

( ) ,
,

1 – – – ind desired
th m m desired eng m

eng eng

T
A ηsgn P P A P

B C
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (62) 

On the generator side, a manually tuned PID controller ensures that the generator speed 
follows the reference value by adjusting the generator current. These two controllers 
provide power tracking, and at the same time, move the engine operating point to the 
minimum BSFC point. 



   

 

   

   
 

   

   

 

   

   282 R.S. Razavian et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

8.2 Battery controller 

The algebraic sum of the power generated by the engine-generator set and the power 
consumed (or generated) by the electric motor is used to charge/discharge the battery. A 
PID controller is responsible for making the battery follow the reference power by 
adjusting the battery current. The NiMH battery model calculates the SoC, and the SoC is 
sent back to the supervisory controller as a feedback. 

During braking, the battery absorbs part of the kinetic energy, and the SoC increases. 
Although not likely with the model-based supervisory controller, the SoC may reach its 
upper limit during braking. In such cases, the supervisory controller turns off the 
regenerative braking, and to compensate for that, it increases the mechanical braking 
effort. In the model, the extra mechanical braking power is subtracted from the electric 
power demand to consider such loss of regenerative braking. 

9 Results 

In this study, all simulations are conducted in the Matlab environment. The optimal 
control problem is solved using the PMP for the FTP75 drive cycle, and control and state 
trajectories are shown in Figure 14. Note that the optimal control value is the same as 
umax but is limited to a constant value ( ).u  

Figure 14 The optimal SoC and control trajectories for the FTP75 drive cycle found using the 
PMP solution 

 

For 68 STS cycles listed in Table 3, the optimal u  is found, and the correlation between 
this parameter and the drive cycle parameters, relation (34), is presented in Figure 15. It 
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is interesting to observe that the best linear approximation matches the relation (34) very 
well. 
Table 3 List of the standard drive cycles used 

Drive cycle Number of STS cycles Drive cycle Number of STS cycles 

UDDS 17 NYCC 10 
US06 5 LA92 16 
EUC 5 SC03 5 
HUDDS 4 JN1015 3 
HWFET 1 IM240 2 

Figure 15 Linear fit for u  

 

In Figure 16, the state and the control trajectories obtained by three different methods are 
shown for a portion of the FTP75 drive cycle. The methods are the PMP solution for the 
full drive cycle, the PMP solution for successive STS cycles, and the solution of the 
feedback controller with estimated .u  Although many simplifications are made to 
estimate ,u  the results are very close to the solutions found using PMP. 

Figure 16 SoC and control trajectories for the three different solutions for FTP75 
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The fuel consumption for different standard drive cycles is presented in Table 4. The first 
row of the table presents the optimal fuel consumption for the entire drive cycle, and the 
second row presents the fuel consumption resulted from the feedback controller with 
estimated u  for successive STS cycles. Due to errors in u  estimation, the final SoC is 
not exactly the same as the reference value (the reference value is 0.6). This variation in 
final SoC contributes to increase or decrease in total fuel consumption. To compensate 
for this error, the fuel consumption is corrected according to (63d). 

genm P= +α β  (63a) 

( )genmdt P dt= +∫ ∫ α β  (63b) 

Δ (assuming short time)res resm E t E= +α β α  (63c) 

( )Δ Δocm QV SoC=α  (63d) 

To evaluate the performance of the optimal controller, it is applied to the high fidelity 
series HEV model. The input to this simulation is the desired speed profile. The 
controller follows the logic in (31), and for the calculation of ,u  the linear fit in  
Figure 15 is used. In the present work, it is assumed that the necessary information is 
available to the controller to estimate .u  The information includes the cruise time (tp) and 
available negative energy (En), as is required in the calculation of u  in Figure 15. 

Table 4 Comparison of fuel consumption for different drive cycles 

 FTP75 NYCC EUC HUDDS HWFET 

PMP solution for the  
full drive cycle (g) 

274.27 31.520 257.243 154.150 263.272 

Feedback controller  
for the STS cycles (g) 

274.68 32.379 256.080 154.368 261.757 

Final SoC 0.6005 0.6034 0.5937 0.6004 0.5925 
Corrected fuel consumption (g) 274.577 31.681 257.374 154.286 263.297 
Increase in fuel consumption 
with respect to optimal value 

0.11% 0.5% 0.05% 0.09% 0.01% 

To compare the behaviours of the control-oriented model and the high-fidelity model, 
simulations shown in Figure 17 are conducted. The input to both models is the desired 
speed profile, and output is the SoC. The comparison of the two SoC trajectories for the 
first 440s of the FTP75 drive cycle is shown in Figure 18. It can be seen that the 
controller can predict the actual vehicle behaviour very well based on the simple  
control-oriented model, in spite of the extensive number of simplifications made in its 
design process. 

To see the optimality of the control strategy, the performance of this controller was 
compared with that of a PID controller. The idea behind this PID controller is to preserve 
the health of the battery as long as possible by minimising variation of the SoC. The PID 
controller keeps the SoC near the reference value by controlling the engine-generator 
power. The PID controller is tuned in such a way that the battery is charged in an 
appropriate time, and at the same time, is allowed to absorb all the regenerative braking 
without reaching the charge limit. Therefore, besides preserving the battery health, such a 
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PID controller is a good candidate for series HEV supervisory controllers in terms of 
optimality. 

Figure 17 Simplified schematic of the simulations to validate controller-oriented model 

 

Figure 18 SoC trajectory for the first 440s of FTP75 drive cycle 

 

As can be seen in Figure 19, the final SoC with the PID controller is higher than the 
reference value, because the battery captures the regenerative braking energy at the end 
of the drive cycle, when the SoC is close to the reference value. This increased SoC 
causes a noticeable increase in fuel consumption, and hinders comparison between this 
controller and the optimal controller (which is charge sustaining). To better compare the 
fuel consumptions, five successive FTP75 cycles were used to approximate infinite 
driving pattern. The results show that the optimal controller gives a fuel consumption of 
1,504.2 grams, whereas the PID controller resulted in a total fuel consumption of  
1,607.3 grams. Thus, fuel consumption is reduced by 6.4% with our model based 
controller. 

Another way to compare the fuel consumptions is to change u  so that the final SoC 
resulting from the optimal controller is equal to the final SoC resulting from PID 
controller. For the FTP75 drive cycle, this comparison shows that the optimal controller 
has a fuel consumption of 304 grams versus the 324 of the PID controller. In this case, 
the optimal controller shows a 6.5% reduction in fuel consumption compared to the PID 
controller. 
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Figure 19 Comparison of SoC trajectories for the FTP75 drive cycle for the two controllers 

 

10 Conclusions 

In this work, the problem of minimising fuel consumption in a series HEV is studied. 
Because of several advantages of model-based controllers, this type of controller is 
chosen for study. Based on a simple mathematical model (the controller-oriented model), 
an optimisation problem is defined. PMP was chosen as the optimal control method with 
known driver inputs. After off-line optimisation, it was observed that there is a simple 
relationship between the optimal solution and the power demand. This relation is found to 
be optimal, and a simple feedback controller is designed based on this relationship. 

The literature mentions that future driving conditions have to be known in advance in 
order to obtain optimal results. In this work, a method is presented to tune the controller 
parameters, but the full drive cycle in not required. If both the time when positive power 
is required (during acceleration and cruising) and the amount of regenerative braking 
until the next stop are known, it is possible to achieve a result which is just slightly 
inferior to the global optimal solution. 

Finally, the performance of the controller has been evaluated by a high-fidelity 
physics-based model, developed in MapleSim. Low-level controllers are used to ensure 
that the powertrain components follow the supervisory controller setpoints. The 
simulations show that the controller can predict real vehicle behaviour with acceptable 
accuracy. Moreover, this controller performs better than a well-tuned PID controller 
which tries to keep the SoC near the reference value to extend the battery life. This 
reduction in fuel consumption has a considerable effect in saving fuel in a global scope. 
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