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Introduction: Motion Capture for Biomechanics

The science of measurement and analysis of the movement of humans and other animals constitutes a broad area in the field of
biomechanics, which relies heavily on many imaging techniques. This article introduces the imaging tools that biomechanists
use to record, analyze, and interpret the movement of humans. Specifically, two popular types of image-based motion capture
systems are introduced: marker-based and markerless motion capture systems. This article also introduces the common workflow
used by biomechanists for the processing of the motion capture data, in order to convert it to easily interpretable biomechanical
variables.
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Types of Motion Capture Systems

Different position sensing technologies rely on certain physical measurements. Some are more direct (e.g., distance, velocity, or
acceleration measurement), and some require further processing of the data (e.g., processing an image of an object). Image-
based motion capture systems (also known as optical motion capture) are more popular for human motion recording in biome-
chanics compared with other methods such as accelerometers.

There are two general types of image-based techniques: (1) marker-based, in which 3-D position of special markers are calcu-
lated, and (2) markerless, in which certain features of an object within an image are identified and processed to obtain the object’s
3-D position. Two or more cameras are usually involved to capture images of the objects frommultiple angles, fromwhich their 3-D
position can be calculated.

The output of most motion capture systems (marker-based andmarkerless systems) is a set of 3-D points in space. They are either
the marker positions that are placed on anatomical landmarks of the human body or the inferred positions of joint centers from
markerless systems. For biomechanical applications such as inverse dynamics analysis, the motion of body segments (e.g., the hand,
forearm, and upper arm) has to be calculated from the 3-D positions of markers or joint centers.

Camera Image Processing and Calibration

In a multicamera system, the 3-D position is calculated by processing multiple images of the same object taken from various angles.
Usually, inclusion of more cameras enhances the accuracy and reliability of the measurement.

A point of interest on a camera sensor corresponds to a line of sight (Fig. 1); the physical position of the point is somewhere
along this line. However, the distance from the camera cannot be calculated. A second image from another camera is needed to
calculate depth. The intersection of the two lines of sights from the two cameras gives the location of the point in 3-D space.

Using homogeneous coordinates (instead of Cartesian coordinates) simplifies the calculations. The homogenous coordinates of
a point in 3-D space are constructed by adding a fourth element to the triplet [X,Y,Z] as X¼ [X,Y,Z,1] (see Fig. 2). Likewise, the
homogeneous coordinate of the image on the camera sensor plane is constructed as u¼ [u, v,1]. The transformation from the spatial
position of an object to its image on the camera sensor in the homogeneous coordinates is given as

u3�1 ¼ P3�4X4�1

The camera parameter matrix, P3� 4, is defined by 11 parameters that describe the position/orientation of the camera in space (6
extrinsic parameters) and its internal structure (5 intrinsic parameters relating to the focal length and sensor shape, skew, and refer-
ence frame).

A computer algorithm needs the camera parameter matrices to process 3-D positions of the objects. Such information is usually
obtained using a calibration process that involves moving an object with known physical attributes in the capture volume. The raw
camera images of the calibration object(s) in multiple frames are used as the input to the calibration process.

Each manufacturer has its own proprietary calibration algorithms. The common basis involves obtaining a measurement data
matrix w by moving a marker within the capture volume:

w3m�n ¼
2
4
u11 / u1n
« «

um1 / umn

3
5
3m�n

The matrix w3m�n contains the registered coordinates of the marker on the m camera sensors in multiple (n) frames.
ui

j¼ [u, v,1]T is the coordinates of the marker image in the ith frame on jth camera sensor. Given enough frames, the measurement
matrix can be broken into two matrices P and X as

w3m�n ¼ P3m�4X4�n ¼
2
4
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Fig. 1 Calculating 3-D position of a marker from its image on multiple cameras.
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where matrices Pj are them camera parameter matrices and Xi are the inferred homogeneous 3-D coordinates of the marker in the
corresponding frame. The calibration process may be improved using multiple markers with known relative distances, which facil-
itates the estimation of P and X matrices.

Marker-Based Motion Capture

By applying marker with known visual characteristics to a body, the body’s motion can be inferred from the motion of the markers.
These marker-based systems are known for their accuracy and robustness and, therefore, are the standard go-to solution when high
position accuracy is needed. Besides the motion capture in biomedical research, animation and movie studios use marker-based
motion capture systems extensively to reconstruct the same movements in virtual environments. Industries also use these tech-
niques for measurements, although more accurate measurements such as from a coordinate measuring machine (CMM) are
available.

Fig. 3 shows a typical setup, in which a number of cameras (firmly fixed) overlook a capture volume. Markers are usually small
objects that are detected by the cameras. The image of the markers on the camera sensor plane is registered by the light-sensitive
pixels. To improve robustness of measurements, infrared (IR) sensitive sensors are used instead of visible light sensors. The markers
are either IR sources themselves (active markers) or reflective spherical objects that reflect the IR light emitted from an external
source (passive markers).

The known coordinates of the pixels on the camera sensor plane are used for the processing. A pinhole camera model (Fig. 2) is
usually used for the relation between an object’s 3-D position and its image on the camera sensor. A 2-D Gaussian distribution can
be used to obtain subpixel accuracy.

Active Versus Passive Markers

Active and passive markers are both used in commercial motion capture systems. Passive markers that reflect IR light from an
external source have the advantage of being cheaper, lighter, and easier to install. Also there is no encumbrance due to wiring.
However, the major disadvantage is the inability to explicitly distinguish markers from each other. In this setting, the markers
are labeled manually in a starting frame, and a computer algorithm “follows” the markers in the subsequent frames by correlating
their position with the previous frame. Therefore, marker mismatch is possible. Another disadvantage of passive marker systems is
that artifacts may be registered by the cameras, because of other reflections in the capture volumes. Therefore, it is always recom-
mended to cover reflective objects and surrounding walls to reduce these artifacts.

Active marker systems have the advantage of direct marker labeling. In active systems, a strobe mechanism turns the markers on
and off at precise times, making the marker detection automatic. Furthermore, because the markers are light sources, the light can be
of higher power compared with passive marker systems, resulting in higher range and accuracy. Lastly, registering artifacts (image of
something other than the intended marker) is less likely in active marker systems. A disadvantage of the active marker systems is the
heavier and more cumbersome markers. Line of sight is also an issue with active markers: a marker can be seen by a camera only if
the camera is within the marker’s angle of coverage, and the marker is within the camera field of view. This increases the possibility
of marker loss, solely because the marker may not be facing the cameras. Lastly, the sampling rate is more limited with active
markers, because all the markers must be turned on and off one by one in each frame (exemplified in Fig. 4). This results in a lower
limit on the duration of each frame. Therefore, the maximum sampling frequency of active marker systems usually drops as more
markers are used.

Standard Marker Sets for Biomechanics

There are recommended marker locations for biomechanical applications to ensure that enough information is captured to recon-
struct the body motion. The International Society of Biomechanics (ISB) and some research institutes have published standard
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Fig. 2 A pinhole camera model and homogeneous coordinate systems.
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marker sets for various applications such as lower limbs, upper limbs, gait, and whole-body analysis. Table 1 shows a few examples
of these marker sets. The table is not an exhaustive list; there are many more marker sets than are presented for various applications
with different aims.

Marker Clusters

Placing markers on bony landmarks is a common way to capture limb motion. The ultimate goal of motion capture in biome-
chanics is often the calculation of joint rotations; therefore, the markers are distributed on a body segment as far apart as possible
to increase accuracy. There are situations when such an approach is not feasible. For instance, to calculate femur rotation, the loca-
tion of the hip joint center is required, which is not easy to estimate using surface marker locations. An alternative approach is to use
a marker cluster that is affixed to the body segment. A marker cluster consists of a rigid base bearing a number of rigidly attached
markers (at least three and noncollinear). Knowing the cluster dimensions, its location/orientation can easily and accurately be
calculated. Attaching a marker cluster to a body segment can facilitate the calculation of its rotation.

marker 2
is on

marker 1
is on

marker 3
is on

marker 4
is on

frame length

minimum achievable frame length
time

Fig. 4 Sampling rate is reduced with the number of markers used in active marker systems.

optical marker

camera 2

camera 1

camera 3

capture volume

camera 4

marker image 
on camera sensor

Fig. 3 A multicamera motion capture system.
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In extreme situations when highest accuracy is needed, a marker cluster may directly be attached to the bone in a surgical oper-
ation. The cluster can therefore exactly represent the motion of the bone and remove the error due to skin movement and sensor
placement.

Locating the Joint Centers

The locations of joint centers are important biomechanical variables that cannot be measured directly using motion capture systems
(specifically, shoulder and hip joints are the hardest). To estimate their location, a number of methods are suggested.

Optimization-based methods
An approximation is to assume rigid body segments that are connected via ideal mechanical joints (e.g., the shoulder resembles
a ball-and-socket joint). As a result, the distance of themarkers from the joint center is assumed to remain constant. An optimization
procedure can find the location of the joint center that minimizes the changes in the joint-to-marker distances.

Machine learning methods
The joints of the body are not ideal mechanical joints, and the distance of the markers from the joint centers is not necessarily
constant and may be dependent on posture. To address this complex behavior, a model can be trained with machine learning
methods. However, such a model requires training data, which is difficult to obtain.

Simple rules
It is also possible to estimate the joint center locations based on simple rules. For example, the midpoint between lateral and medial
epicondyles of the humerus is often taken as the elbow joint center.

Table 1 Examples of marker sets for different applications

Gait (Kadaba, 1990)
Lower extremity (Wu et al.,
2002)

Upper extremity

(Wu et al., 2005) Whole body (plug-in gait)

Sacrum (attached on
a 10 cm wand)

PSISa Spinous process of the
7th cervical vertebra

Left/right front head (over
the left/right temple)

Left/right ASIS

ASISb ASIS Spinous process of the
8th thoracic vertebra

Left/right back head Left/right PSIS

Greater trochanter Lateral femoral
epicondyle

Deepest point of incisura
jugularis

7th cervical vertebrae Left/right knee (lateral femoral
epicondyle)

Lateral to knee joint Medial femoral
epicondyle

Most caudal point on the
sternum

10th thoracic vertebrae Left/right thigh (below the
swinging of the hand)

Lateral malleolus Medial malleolus Most dorsal point on the
acromioclavicular joint

Jugular notch Left/right angle (lateral
malleolus)

Between second and
third metatarsal
heads

lateral malleolus Trigonum spinae scapulae Xiphoid process of sternum Left/right tibia (attached on
a wand on the lower 1/3
of the shank)

Midthigh (attached
on a 7 cm wand)

Most medial point of
medial tibial condyle

Angulus inferior Middle of the right scapula
(no left marker)

Left/right toe (second
metatarsal head)

Midshank (attached
on 7 cm wand)

Most lateral point of
lateral tibial condyle

Angulus acromialis Left/right acromioclavicular
joint

Left/right heel (calcaneus
same height as toe)

Tibial tuberosity Most ventral point of
processus coracoideus

Left/right upper arm between elbow
and shoulder (placed
asymmetrically)

Lateral humerus epicondyle Left/right elbow (lateral humerus
epicondyle)

Medial humerus epicondyle Left/right forearm between the
elbow and wrist (places
asymmetrically)

Radial styloid process Left/right wrist, thumb side (on
a wand parallel to wrist axis)

Ulnar styloid process Left/right wrist, pinkie side (on
a wand parallel to wrist axis)

Left/right hand (second
metacarpal head)

aPosterior superior iliac spine.
bAnterior superior iliac spine.
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Sources of Error in Marker-Based Motion Capture and Mitigation Techniques

Soft tissue artifacts
Optical markers are usually attached to the skin using adhesive interfaces. As a result, there is a high chance of marker movement
relative to the bone (due to skin stretch), deformation of the tissue underneath, and sensor/skin slippage. One study has reported
that soft tissue artifacts may cause up to 16 mm relative movement between the marker and underlying bone.

Computer algorithms have been developed to partially compensate for marker movements. To achieve the highest accuracy,
markers may be fixed directly to the bone via surgical operations to bypass soft tissue altogether. A noteworthy issue is the inertia
of the sensor cluster, which may cause deflection in the attached pin and introduce error.

A noninvasive alternative is to use fluoroscopy to track moving bones directly. Fluoroscopy is a “video” of X-ray images; if taken
frommultiple angles, 3-Dmotion of bones can be calculated. The drawbacks are expensive equipment, limited capture volume, and
the significant doses of radiation involved.

Marker occlusion
Amarker has to be seen by at least two cameras to calculate its 3-D position. Therefore, it is possible to lose sight because of obstruc-
tion (by the body or obstacles), bad marker orientation (more prominent in active markers), or simply moving out of the capture
volume. Including more cameras and properly placing them reduces the risk of losing markers.

In the case that a marker is lost, themissing trajectory has to be filled. Interpolation methods (linear or higher order) may be used
to fill in the gap and satisfy continuity in the data. Other sophisticated methods such as Kalman filters may also be used to estimate
the lost data.

Markerless Motion Capture

Another category of motion capture system involves recording a video of the moving object with one or more cameras and calcu-
lating its motion by detecting features in the frames. Unlike the marker-based system in which distinctive marker locations are
measured, the markerless systems only rely on image processing techniques to get the location of the features in the frames. There-
fore, their accuracy is limited by the performance of the detection algorithms, and their usefulness depends on properties of the
scene and the object of interest. On the other hand, they have many advantages compared with the marker-based systems. Since
they only need a video of the moving object, the sensing can be completely remote from the scene. An example is ball tracking
in sporting events. Furthermore, the objects need little to no preparation, making it a faster method for data collection. The method
is less intrusive than marker-based methods and does not impede motion. Implementations of this method employ regular video
cameras or webcams that are often less expensive than the cameras used in marker-based motion capture systems. Lastly, a single-
camera video can be used to obtain some information (such as 2-D position) about the motion, a feature that is not available in the
marker-based systems.

RGB and Range (Depth) Images

Capturing a scene using a red-green-blue (RGB) sensor yields a set of frames of visible light that may be used to obtain information
about motion in two dimensions within a plane parallel to the camera sensor. Measuring depth is not possible unless multiple
synchronized videos from various angles are used. The processing of an object’s location using multiple videos is very similar to
the multicamera systems described previously for marker-based systems.

Alternatively, instead of multiple RGB images, a “range image” can be used to get 3-D information about the objects in a scene.
Unlike a regular image in which each pixel contains light intensity information, a pixel of a range image contains depth information.
An easy and inexpensive method for creating a range image involves an emitter that projects a light pattern onto the object and
a camera that captures an image of the patterns from a different angle. The distorted pattern viewed by the camera can be used
to calculate the depth of each pixel in the field of view. As an alternative to a pattern, a sensor may be able to detect the rebounded
light and calculate depth based on the light time of flight. In both cases, the light may be visible or invisible. Invisible light is bene-
ficial as it does not interfere with visible lights that may be captured by other RGB cameras. Infrared lasers and sensors are
commonly used (e.g., in Microsoft Kinect or Leap Motion controller).

Markerless Feature Detection

The images of the markers in marker-based systems are easily identifiable in the camera sensors. In the absence of such identifiable
markers in markerless systems, another layer of processing is needed to identify the objects of interest in each frame. The human eye
is adept at object recognition; computers, on the other hand, require complex algorithms to perform such analyses.

There exist a variety of algorithms that can be used for this purpose. A common practice is to identify the human body in a frame
and then fit a framework or “skeleton” to it (Fig. 5). The skeleton is in the shape of a stick figure, with multiple body segments
connected to each other at joints (either real or imaginary). Some computer programs use a calibration process such as a T-pose
posture in order to better fit a subject-specific skeleton to the human body.
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Fitting the modeled skeleton to the image can be accomplished by various image processing and machine learning techniques.
Some methods involve matching 3-D shapes to the body segments (Fig. 6) or using learned models such as support vector
machines, random forests, or artificial neural networks to identify joint locations.

Despite decreased accuracy, one advantage of markerless methods is that the body-segment rotations are readily available after
the fitting process. In marker-based systems, the body-segment rotations must be calculated from skin markers, which are shown to
be an error-prone process.

Image processing
There exists a multitude of image features that can aid in detecting a body. Often, these features are descriptors of points or sets of
points within the image that may be robustly detected. Features may be detected in either an RGB image or a depth image.

One type of feature is an edge. An edge is a set of points at which there is a boundary between two segments of the image. This
boundary is often described as a gradient of pixel values. A common tool for edge detection is the Sobel operator, which applies
3 � 3 convolutional filters to identify the magnitude of the image gradients in all directions at each pixel (Fig. 7). A Canny edge
detector often uses the Sobel operator along with a Gaussian filter to reduce noise. A corner may be defined as the point of inter-
section of two edges or two gradients.

Another set of methods for identifying interest points in images are feature descriptors. These are numerical descriptions of
shape, color, texture, and other identifiers that are able to be robustly detected. Feature detectors are used prominently in image
stitching and object tracking in video and may make use of edges or corners. Feature or key points are detected in two or more
frames, and these features are matched between frames based on their values and physical proximity within the image. Feature
descriptors and detectors such as scale-invariant feature transform (SIFT) features, speeded-up robust features (SURF), and the histo-
gram of oriented gradient (HOG) features are frequently implemented (Fig. 8).

Fig. 5 The skeleton fitted to a body.

Fig. 6 Fitted 3-D shapes to the point cloud.
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Objects can also be identified through blob detection. To find a blob, the image is binarized according to one or more threshold
values to identify only pixels having values within this new range (Fig. 9). If variance between the range of interest and the rest of the
image is high, then automatic thresholding may be performed using Otsu’s method of foreground segmentation. Once a binary
image is acquired, the white areas representing the range of interest can be identified and classified according to their size and shape,
allowing a specific blob to be identified if such information is known.

If a depth image or multiple RGB images are available, a point cloud of the scene may be captured. The methods discussed earlier
may also be applied in three dimensions, or if the points belonging to the object or body of interest are known, then amodel may be
fitted to the body to identify its location and orientation. A commonmethod of matching amodel point cloud to the captured point
cloud is the iterative closest point (ICP) algorithm, in which the points from each point cloud are matched to the closest correspon-
dent, and translation and rotation are calculated to best align the model using these correspondences (see Fig. 6).

Machine learning
Machine learning techniques can also be applied to determine pose and gestures.

Support vector machines (SVMs) are learning models that are trained to classify data. Labeled data are used to construct a set of
hyperplanes within the possible input space, which is then used to classify new data. The inputs can include interest points or
features as described in the previous section.

Hidden Markov models (HMMs) are frequently implemented for gesture recognition. In a Markov chain, a system may exist in
one of many states, with probabilities associated with changing from one state to another. In an HMM, many of these states are
hidden from the observer. In the case of gesture recognition, it is impossible to manually identify the high-variance “states” of
the body, so the states and probabilities are determined through training with a labeled data set of movements. After training,
a particular gesture has a defined set of states, and the probability of a newly performed movement matching a gesture can be calcu-
lated using the HMM. A threshold probability decides whether or not a movement is classified as a defined gesture.

Fig. 7 A Sobel edge detector applied to an image of a series of gears.

Fig. 8 Speeded-up robust features (SURF) matched between two frames with a translational difference.
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The Microsoft Kinect, a combined RGB/depth camera, performs body pose recognition using randomized decision forests. This
is an ensemble of decision trees trained independently, where each tree performs a classification or regression on a sample based on
its features. The output of the randomized decision forest can be the mean or the mode of the tree outputs.

Artificial neural networks (ANNs) are also being applied to the problem of human body pose estimation and tracking. ANNs use
an ensemble of digital units called neurons based on their biological namesake, arranged in layers, where the signals entering each
unit are combined and adjusted according to a weight assigned during training. The output response is an estimation that can be
used for a classification or regression. More complex versions such as convolutional neural networks have been applied successfully
to two-dimensional pose estimation.

Sources of Error in Markerless Motion Capture and Mitigation Techniques

A big issue with markerless motion capture systems is the segmentation error. Correctly identifying each body segment is crucial to
reconstructing the body motion. A loose shirt, for example, may cause serious challenges in correctly identifying various body parts.

Improving test conditions can greatly affect the results. Testing in a well-lit environment, high contrast between the subject and
background (e.g., using different colors), and using tight clothing are a few remedies to improve the results.

More advanced machine learning techniques and inclusion of multiple cameras are shown to improve the outcome. However, it
is still an ongoing research topic. There is a trade-off between robustness and performance for most methods, where the complexity
of the model allows for increased precision and accuracy but is not always reliable or applicable to a large population.

Pros and Cons of Motion Capture Systems

Table 2 summarizes the common image-based motion capture systems for biomechanical applications and their advantages and
disadvantages.

Other Imaging Techniques Used in Biomechanics

Fluoroscopy

Fluoroscopy is a method to track the motion of bones and other biological tissue in a series of X-ray images. Important drawbacks
include expensive equipment, high doses of radiation, and small capture volume (even the state of the art is inapplicable for full-
body motion tracking). Furthermore, a limited number of capture directions are available to reconstruct the 3-D motions (two
directions are the state of the art). The nature of the radiations (X-ray) is also unfavorable, and long exposures are not possible.

Dual-Energy X-ray Absorptiometry

Another technology based on X-ray images is the dual-energy X-ray absorptiometry (DXA), which involves emitting two rays of
X-ray with different energy content, in order to capture different tissues (bone and soft tissue mass, e.g., fat and muscle).

A DXA image has applications in biomechanics including calculation of bone and soft tissue mass and inertia properties of body
segments.

Fig. 9 An example of blob detection used to track fingertips.
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CT Scan

The last X-ray-based imaging technique used in biomechanics is a computed tomography (CT). A CT scan produces a 3-D image of
the scanned object. One application of a CT image is the accurate 3-D reconstruction of bones to be used in computer programs such
as finite element analysis.

MRI

Similar to a CT scan, magnetic resonance imaging (MRI) can be used to create 3-D images of the scanned object. Unlike a CT scan, an
MRI machine uses very strong magnetic fields and nonionizing radio waves to change and measure the properties of a hydrogen
nucleus; therefore, an MRI creates images of water content in living tissues.

MRI images are widely used in biomechanical research. Applications include measurement of muscle fiber length and orienta-
tions, tendon and ligament length and attachment points, joint structure and geometry, and bone structure.

An issue with an MRI image (also a CT scan) is its complexity. A trained eye is needed to distinguish between different tissues in
an image. Manually labeling each area in an image is a tedious task. Sophisticated computer algorithms are being developed to
make image segmentation automatic.

Ultrasound

Ultrasound imaging is an inexpensive and safe alternative to X-ray imaging to capture biological tissues. Recent advancements in
ultrasound imaging techniques have allowed biomechanical researchers to capture images of muscle fibers, tendons, and joints to
be used in biomechanical analysis.

Other Nonimaging Methods

Besides the image-based techniques mentioned earlier, there are other methods to obtain the 3-D position of objects.
Inertial measurement units (IMUs) have gained considerable attention in recent years, as inexpensive systems to measure

motion. An IMUmeasures the linear accelerations (three-axis accelerometer) and rotational velocities (three-axis gyroscope), which
can be numerically integrated to obtain 3-D position/orientation of an object. Since the IMUs directly measure linear accelerations
and rotational velocities, their outputs are generally better than accelerations and velocities obtained by taking the time derivative of
position data. However, a major problem with the current technology of IMUs is the drift in the position level (gradual divergence
of the calculated position from the actual value), which is a result of the noise in the integrated signals. Sensor fusion (using
multiple IMUs, global positioning system (GPS), height sensor, magnetometer, etc.) and model-based techniques (e.g., extended
Kalman filter) are examples of the approaches taken to reduce the drift in IMUs.

Table 2 Comparison of motion capture systems

Marker-based Markerless

Active markers Passive markers Single camera Multiple camera Depth camera

Examples Optotrak, Qualisys
PhaseSpace

Vicon, OptiTrack
Optotrak, Qualisys

Any camera Organic motion, Simi,
KinaTrax

Kinect, Leap

Pros • Very high accuracy
• Less postprocessing
• No marker
confusion

• Very high
accuracy

• Light markers
• Unencumbering

• Easy to set up
• Capture volume can
be any size

• Easy to calibrate
(depends on
application)

• Portable
• Inexpensive
• Unencumbering

• Possibly high 3-D
accuracy

• Capture volume can
be any size

• Possibly inexpensive
• Unencumbering

• Easy depth
information

• Usually comes
precalibrated

• Portable
• Inexpensive
• Unencumbering

Cons • Larger markers
• Sometimes wired
markers restrict
movements

• Marker loss is
more likely

• Tedious calibration
• Not very portable
• Expensive

• Chance of
marker confusion

• Tedious calibration
• Not very portable
• Expensive

• No depth information
• Requires image
processing algorithm
to obtain useful
information

• Only as accurate as the
image processing
algorithm allows

• Not very portable
• Requires calibration

• Lower depth accuracy
• Limited capture volume
• Only depth from
one angle
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Magnetic motion capture systems use a magnetic field transmitter/sensor to calculate the position and orientation of the
attached object. Short-range interference with metallic (ferromagnetic) objects and bulky sensor/transmitter are some drawbacks
of this technique. An advantage is that no direct line of sight between sensor and transmitter is needed.

Direct measurement methods such as electronic goniometers are also used in biomechanical applications to measure joint
angles. Goniometers, however, have the disadvantage of being limited to measuring rotation about one or two axes (3-D rotations
are not possible with one goniometer). The physical encumbrance is another disadvantage of these types of measurement.

Kinematic Analysis: Joint Coordinate System, Euler Angles, and Rotation Matrix

For many biomechanical applications (e.g., inverse dynamics or clinical assessments), experimental data for the location of joint
centers and segment rotations are needed. Furthermore, reporting such information in clinically relevant terms facilitates the inter-
pretation of the data.

A systematic way to obtain the joint rotations starts by fixing a coordinate system (CS) to each segment (called body-segment
coordinate system). Relative rotation of the distal segment’s CS with respect to the proximal ones defines the joint rotation.

Recommendations for Body-Segment Coordinate Systems

The ISB has proposed standards for defining the body-segment CS that results in clinically relevant joint rotations and promotes
consistency among researchers. The suggestions are published in two articles:

• ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – Part I:
Ankle, hip, and spine, by Wu et al., (2002), Journal of Biomechanics

• ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – Part
II: shoulder, elbow, wrist, and hand, by Wu et al. (2005), Journal of Biomechanics

Rotation Matrix

Relative rotation of two adjacent CSs can be fully expressed by a “rotation matrix,” R3�3. The rotation matrix can be constructed as

R ¼
2
4
i:I i:J i:K

j:I j:J j:K

k:I k:J k:K

3
5

where (I, J,K) are the unit vectors of the proximal segment’s CS and (i, j,k) are those of the distal segment’s CS. This rotation
matrix describes how the proximal CS should rotate to obtain the distal one, that is,

CSdistal ¼ R½ � CSproximal

A rotation matrix is the most robust method to express the relative rotation of two CSs. However, they are mathematical entities
that are hard to interpret (e.g., in a clinical assessment report). That is the reason why joint coordinate systems (JCS) and Euler/Car-
dan angles are more popular in biomechanics.

Euler/Cardan Angles

A rotation matrix has nine elements; however, there are only three rotational degrees of freedom. Therefore, a rotation matrix
contains redundant information. Euler angles express the transformation between two CSs using a triad of sequential rotations.

For instance, the body-fixed (ZXZ) sequence is shown in Fig. 10 and described as follows: starting from the original CS (X,Y,Z),
the first Euler angle (f) specifies the rotation about the Z axis, which results in a new CS (X2,Y2,Z2). Next, the second Euler angle (q)
specifies the rotation about the new X2, resulting in a third CS (X3,Y3,Z3). Finally, the third Euler angle (j) rotates the last CS about
its Z3, which gives the target CS (x,y,z). An Euler angle representation is sequence-dependent, meaning that another sequence (e.g.,
YZX) results in a different coordinate system.

A sequence with the same first and third axes (e.g., XYX or ZXZ) is usually called an Euler sequence, while a sequence involving
all three is called a Cardan sequence (e.g., XYZ or ZXY).

The Euler angles may also be expressed as space-fixed, in which all the rotations occur about the axes of a CS that is fixed in space
(may or may not be the initial CS).

Joint Coordinate System

An alternative way to express the rotation of two adjacent segments is the joint coordinate system (JCS) method. Similar to Euler
angles, the relative rotation of two body-segment CSs is expressed by three rotation angles. The difference is that the rotations are
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about axes that belong to the distal and proximal CSs (as opposed to the sequential rotation about the axes of a single CS). Since the
axes of rotation are taken from two separate CSs, their orthogonality is not guaranteed.

The JCS method is widely adopted, mostly due to its relevance to clinical terms. The example in the succeeding text is used to
illustrate the JCS convention; it follows the ISB recommendations for JCS to obtain elbow rotations.

The first segment, humerus, has its CS (I, J,K) centered at the glenohumeral joint center (see Fig. 11). J is the unit vector of the line
that connects the midpoint of medial and lateral epicondyles to the glenohumeral. I is perpendicular to the plane containing J and
the two epicondyles. Finally, K is the cross product of I� J.

The forearm CS (i, j,k) has its origin at the ulnar styloid process. The j vector is along the line connecting the origin to the
midpoint of medial and lateral epicondyles. i is perpendicular to the plane that contains j, origin, and radial styloid process, point-
ing anteriorly (assuming body in standard anatomical position). The last unit vector is k¼ i� j.

The elbow JCS is described as rotations about three axes (see Fig. 12); the recommendation for the first axis is e1¼K of the
humerus CS; the second one is e3¼ j of the forearm CS; the last axis, the “floating axis,” is defined as the common perpendicular
of the first two vectors (ef¼e3�e1¼ j�K).

The first rotation of the elbow JCS (a about e1) roughly gives the flexion angle and is calculated as the angle between the floating
axis, ef, and a reference axis fixed to the first body (taken to be I), that is, a¼cos�1(ef . I). Similarly, the rotation g about e3 is calcu-
lated as the angle between the floating axis and a reference axis on the second body (taken to be i). The angle g¼cos�1(ef . i), there-
fore, gives an approximation of the supination/pronation angle. The last rotation (abduction/adduction) is about the floating axis
and is calculated as the angle between the two body-fixed axes b ¼ p

2� cos�1ðe1:e3Þ.

Pros and Cons of Angle Calculation Methods

The Euler/Cardan angles and JCS are more or less similar and are both frequently used in biomechanical applications. It is often
mentioned that the JCS is advantageous over Euler angles because JCS is sequence-independent. This statement may not be entirely
accurate, as there is indeed a sequence that is embedded in the choice of the axes.

An important issue with the Euler/Cardan angles is the existence of a mathematical singularity (often called gimbal lock). This
occurs when the second rotation is zero (Euler sequences) or 90 degrees (Cardan sequences). One can avoid singularities by using
a quaternion (e.g., Euler parameters) instead of Euler angles, but quantities are difficult to interpret physically.

Y

X

Z

y

x
z

Fig. 11 The recommendation for arm segment coordinate systems.
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Fig. 10 A ZXZ Euler sequence.
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Rotationmatrices are themost complete form to express relative rotation of two segments but fail to provide tangible description
about the rotations. It is hard to infer the amount of a joint rotation (e.g., knee flexion angle) directly from the elements of the
rotation matrix without mathematical manipulations.

Conclusions

Image processing plays an important role in measuring human motions for biomechanics and clinical applications. Marker-based
systems have been the dominant experimental modality to date, as a result of their superior positional accuracy. However, new
modalities for human motion capture are being actively developed and promise lower cost and greater portability. In the future,
we expect that markerless image processing will become the motion capture system of choice, once the issues of reliability and posi-
tional accuracy are resolved.
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Fig. 12 Joint coordinate system to describe the elbow rotation.
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