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Abstract— Stroke rehabilitation technologies have focused on
reducing treatment cost while improving effectiveness. Reha-
bilitation robots are generally developed for home and clinical
usage to: 1) deliver repetitive practice to post-stroke patients,
2) minimize therapist interventions, and 3) increase the number
of patients per therapist, thereby decreasing the associated
cost. The control of rehabilitation robots is often limited to
black- or gray-box approaches; thus, safety issues regarding the
human-robot interaction are not easily considered. To overcome
this issue, controllers working with physics-based models gain
more importance. In this study, we have developed an efficient
two dimensional (2D) human-robot interaction model to imple-
ment a model-based controller on a planar end-effector-type
rehabilitation robot. The developed model was used within a
nonlinear model predictive control (NMPC) structure to control
the rehabilitation robot. The GPOPS-II optimal control package
was used to implement the proposed NMPC structure. The
controller performance was evaluated by simulating the human-
robot rehabilitation system, modeled in MapleSimr. In this
system, a musculoskeletal model of the arm interacting with
the robot is used to predict movement and muscle activation
patterns, which are used by the controller to provide optimal
assistance to the patient. In simulations, the controller achieved
desired performance and predicted muscular activities of the
dysfunctional subject with a good accuracy. In our future work,
a structure exploiting the NMPC framework will be developed
for the real-time control of the rehabilitation robot.

I. INTRODUCTION

Stroke is the leading cause of chronic upper extremity
impairments in older adults [1], [2]. Intense and motivating
rehabilitation therapy has shown promising results in stim-
ulating the neural plasticity to treat post-stroke movement
impairments [3]. Hence, upper extremity rehabilitation robots
are developed targeting this kind of therapy [4].

To stimulate neural plasticity, three modes of high-level
control scenarios are used in rehabilitation robots: assistive,
corrective, and resistive (see Fig. 1) [5], [6]. Consequently,
low-level control scenarios are needed to implement those
high-level control modes. Assistive control mode is the most
common in these robots, and the following approaches are
used for this mode: 1) Passive control–passive trajectory
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tracking, passive mirroring and passive stretching, 2) Trig-
gered passive control, and 3) Partially assistive control–
admittance/impedance control, attractive force field control,
model-based assistive control, and offline adaptive control
[6] (refer to Fig. 1).

In robotic rehabilitation, although the patient is physically
interacting with a mechanical device, these robots mostly
use black-box approaches (Fig. 1), which do not consider
human-robot interaction. Thus, safety issues may become
a concern. For this reason, gray-box (triggered passive),
kinematic-based (attractive force field), model-based and
artificial-intelligence (AI) (offline adaptive mode) controllers
have been developed to reduce the safety risks [6] (see
Fig. 1). Though gray-box controllers incorporate feedback
from the human body using biosignals [7], they require
intensive preparation and are therefore not practical for
daily usage with multiple post-stroke patients. Among other
controllers, model-based control is more advanced, since:
1) it can provide more information regarding the human-
robot dynamic interaction, 2) it can be used for dynamic
parameter identification of the human body, 3) in contrast
to black/gray-box controllers, a physics-based model can
leverage the inherent dynamics of the system and facilitate
implementation of special control techniques [8], [9], that
can optimize a specific performance criteria while meeting
stringent system constraints.

Studies on model-based control of rehabilitation robots
are limited in the literature. Ding et. al. [10] used a muscu-
loskeletal upper extremity model (without including muscle
dynamics) to implement a model-based assistive controller
for an upper extremity rehabilitation exoskeleton.

The objective of the current work is to predict muscle
activities of a post-stroke patient during interaction with a
rehabilitation robot, and provide quantitative therapy eval-
uations, thereby improving the quality of therapy in terms
of safety and motor function improvement. To achieve this
goal, we integrated a dynamic model of an end-effector-type
robot with a 2D upper extremity musculoskeletal model to
develop the human-robot interaction model, which can then
be used with a proper controller to achieve this goal. For
example, it can be used with gray-box controllers, in which
the surface elecromyography (sEMG) signals can estimate
the muscle activation levels of the patient, or be integrated
with AI and any other type of controller that can predict
muscle activations.

Recent progress in the development of the NMPC moti-
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Fig. 1. Rehabilitation robot control strategies. Gray- and black-box control
methods are colored in dark gray and black, respectively.

vates us to use the developed non-linear human-robot interac-
tion model to control the rehabilitation robot. In our research,
the human-robot interaction model is confined within an NM-
PC of the stroke rehabilitation robot. The proposed controller
uses the musculoskeletal model of the upper extremity to
predict the movements and muscle activations [11], thereby
providing optimal assistance to the patient.

II. METHOD

A. Modeling

To develop a human-robot interaction model, both systems
are modeled separately and then integrated into a single
model. To model these systems, the MapleSimr software
package is used for the following reasons:

1) Multi-domain capabilities: mechanical system support
for modeling a parallelogram linkage, electrical system
support to model DC motors, and biological system
support for modeling the muscles and musculoskeletal
system,

2) Symbolic processing,
3) Optimized code generation,
4) CAD support.
In the following subsections, each model will be presented

individually. Then, their integration will be discussed.
1) Upper Extremity Rehabilitation Robot Model: Our

rehabilitation robot is designed and developed by Quanser
Inc. and the Toronto Rehabilitation Institute (TRI). It is a
two degree of freedom (DOF) parallelogram linkage (see
Fig. 2), that a post-stroke holds the end-efector (see Fig. 2)
and the robot performs reaching movements in the horizontal
plane for the rehabilitation of movement impairments in
the upper extremity. This 2DOF robot has two DC motors
and two optical encoders connected to the motors. The
motors drive the parallelogram base joints using timing
belts. The timing belts increase the stiffness of the driving
joints. The robot has friction in its joints and on the surface
supporting the end-effector. The frictions are modeled using
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Fig. 2. Studied rehabilitation robot.

a continuous velocity-based frictional model [12]. The end-
effector kinematics are:

re = ΦR(q)

ve =
∂ΦR

∂q q̇ = JRq̇

ae = J̇Rq̇ + JRq̈

(1)

where re, ve and ae are end-effector position, velocity and
acceleration in the global coordinates (ZX), respectively, and
JR is the robot geometric Jacobian. The dynamic model of
the system is:

τR − JR
TFint = MR(q)q̈ + VR(q, q̇) + fT

+ KP (q− q0) + JR
T fF

= ΓR(q, q̇, q̈) (2)

where τR is the vector of robot motor torques, Fint and
fF are robot to human interaction force and friction force
under the end-effector in the global coordinates, respectively.
MR is the robot inertia (mass) matrix, and VR is the robot
Coriolis-centrifugal torque vector. fT is the friction torque
vector at the joints. KP is a 2× 2 symmetric joint stiffness
matrix, and q0 is the equilibrium position of the driving joint
angles.

2) 2D Musculoskeletal Upper Extremity Model: We have
used a musculoskeletal model to represent the human body.
To build such a model, one should consider the tradeoff
between the model complexity and computation costs. To be
used within the NMPC scheme, the musculoskeletal upper
extremity model should have a simple structure. Since the
robot performs 2D movements, the musculoskeletal arm is
modeled as a 2D double-pendulum operating in the hor-
izontal plane. The model parameters are mapped from a
high-fidelity 3D musculoskeletal model presented in [13],
[14]. The mapping procedure has been discussed in [15].
The double-pendulum model is driven by 6 muscle groups,
that are lumped from 29 muscles in the 3D musculoskeletal
arm model. These muscles include shoulder and elbow
mono/bi-articular flexors and extensors. The 3D arm model
is placed in front of the robot at different heights (sitting
positions); then the mapping is done on a plane that has
maximal interference between the robot and 3D arm model
workspaces (see Fig. 3). Muscle lengths are approximated
by a 5th-order polynomial function of arm joint angles
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Fig. 3. (a) Rehabilitation robot workspace and 3D musculoskeletal model
workspace evaluated at different chair heights and a single hand orientation
with respect to the end-effector. (b) Mapping 3D musculoskeletal model to
2D model while interacting with the rehabilitation robot.

(θ = [θ1, θ2]
T ). Then, the virtual work principle is used

to evaluate muscle moment arms [16]. In the arm model,
the tendons are assumed to be rigid elements, since the
tendon compliance is proportional to its slack length and
tendon slack lengths in the upper extremity are not large
[17]. Hence, only the contractile and passive elements of
the Hill-type muscle model are used to simulate muscle
contraction dynamics. Considering the dynamic properties of
human body joints [18], damping coefficients are assigned
to the shoulder and elbow joints of the 2D arm model. The
hand kinematics are:

rh = ΦH(θ)⇒ θ = ΨH(rh)

vh = ∂ΦH

∂θ θ̇ = JH θ̇

ah = J̇H θ̇ + JH θ̈

(3)

where rh, vh and ah are hand position, velocity and accel-
eration in the global coordinates, respectively. JH is the 2D
arm geometric Jacobian, and ΨH , which has a closed-form
expression, is the inverse of vector function ΦH . Finally, the
dynamic equation of this 2DOF arm model is as follows:

τH + JH
TFint = MH(θ)θ̈ + VH(θ, θ̇) + Bθ̇

= ΓH(θ, θ̇, θ̈) (4)

where τH is the vector of 2D arm joint torques, which are
functions of muscle lengths (lM1..6), velocities (vM1..6), moment
arms (rM1..6) and activations (aM1..6). MH and VH are the 2D
arm inertia (mass) matrix and Coriolis-centrifugal torques
vector, respectively. B is a diagonal damping matrix.

3) 2D Human-Robot Model: The developed robot and 2D
musculoskeletal arm models are connected to each other by
a revolute joint (along the Y -axis), which is equipped with
a force sensor. This integrated model is a 2DOF closed-
chain linkage with 8 inputs (2 robot motor torques, τR1,2 ∈
[−10, 10] N.m, and 6 muscle activations, aM1..6 ∈ [0, 1]), and
4 outputs (2 robot joint angles, q1,2, and 2 force sensor
outputs, FextZ,X ). For this 2DOF mechanism, an optimized

dynamic equation can be derived, if the number of gener-
alized coordinates is reduced to 2 (the number of DOFs).
In this subsection, we will provide a procedure to obtain
an efficient number of equations for the system dynamics.
In this closed-chain linkage, translational kinematics of the
hand and end-effector should be the same (i.e. rh = re,
vh = ve, vh = ve), and from (1) and (3) we get:

θ = ΨH(ΦR(q))

θ̇ = JH
−1JRq̇

θ̈ = JH
−1
(
J̇Rq̇ + JRq̈− J̇H θ̇

) (5)

Thus, the 2D arm kinematics can be written in terms of
robot kinematics. Combining (2) and (4), the 2D human-
robot dynamics will be:

τH + JH
TJR

−T (τR − ΓR(q, q̇, q̈))− ΓH(θ, θ̇, θ̈) = 0
(6)

The left-hand-side of (6) is a function (Π) of control inputs
(τR1,2 and aM1..6), q, q̇ and q̈, in which θ, θ̇, and θ̈ are
substituted from (5). The rearranged dynamic equation and
its corresponding state-space equation is:

q̈ =

(
∂Π

∂q̈

)−1(
Π− ∂Π

∂q̈
q̈

)
= M−1F (7)

ẋ(t) =

{
q̇

M−1F

}
= f (x(t),u(t)) (8)

where x = [q1,2, q̇1,2]
T ∈ R4 and u = [τR1,2, a

M
1..6]

T ∈ R6

are the system state and control input vectors, respectively.
M ∈ R2×2 is the system mass matrix, and F ∈ R2 is the
right-hand-side force vector of the system dynamics.

B. Controller Structure

In the human body, the arm motion is controlled by the
central nervous system using a combination of feed-forward
and feedback control commands [11]. The feed-forward
commands are estimated using an internal representation of
the arm, and the feedback control is a set of corrective
commands resulting from sensory organs in the arm. This
control structure is analogous to the NMPC with receding
horizon. The NMPC uses: 1) a forward dynamics (feed-
forward) model of the system to predict optimal movements,
and 2) feedback information for error correction. During a
prediction horizon (tph), optimal movements are determined
by minimizing a cost functional (J) subject to the system
dynamics (i.e. (8)) and some constraints.

In our human-robot rehabilitation system, the goal is to
optimally control the robot while estimating the human body
muscular activities. Thus, the system can be controlled by
an NMPC with feed-forward predictions for human body
and robot optimal movements, and feedback commands
for prediction improvement. To minimize the robot energy
consumption, the human’s physiological effort, and end-
effector tracking error, our proposed cost functional is:

J =

∫ t0+tph

t0

(
uTRu + eTQe

)
dt (9)
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Fig. 4. Controller structure of the human-robot rehabilitation system for
model-in-loop testing.

where R and Q are positive-definite diagonal weighting
matrices. These weights are chosen such that the objective
functional results in the allowable error associated with the
state or effort. Thus, the end-effector compliance can be
controlled by adjusting the Q. e = [e1, e2, e3, e4]

T is the
state vector error in the global coordinates, i.e.:

e =

{
ΦR(q)− rd
JRq̇− ṙd

}
(10)

where rd is the desired end-effecor (hand) trajectory in the
global coordinates.

Considering the human-robot dynamics (8), interaction
force is assumed to be an internal force. Nevertheless, if
the human’s muscle activation patterns are different from
the human-robot model activations, the modeled interaction
force (Fint) will not be equal to the measured values by
the force sensor (Fext). Consequently, an internal force
constraint is introduced to the system dynamics:

ψ (x(t),u(t), t) = Fint − Fext = 0 (11)

where considering (4), the modeled interaction force can be
written as:

Fint = JR
−T (τR − ΓR) (12)

Then, the human-robot constraint vector is: xmin

umin

0

 ≤
 x(t)

u(t)
|ψ (x(t),u(t), t)|

 ≤
 xmax

umax

ε


(13)

Since the dynamic properties of the human body may be
different from the 2DOF model’s dynamic properties, the
internal force constraint (11) is relaxed to reduce the effect of
unwanted dynamics due to the mentioned difference. Thus,
in (13), a relaxation parameter (ε) is added to the internal
force constraint.

The controller schematic is presented in Fig. 4. The
human-robot rehabilitation system, modeled in MapleSimr,
receives two sets of inputs: 1) the robot motors are driven by
the NMPC output for joint torques, 2) muscle activations of
the musculoskeletal model are either produced by a forward
static optimization (FSO), in which a musculoskeletal system
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Fig. 5. Desired trajectory for point-to-point reaching movement.

behavior is modeled through static minimization of physio-
logical cost functional (see [19]), or measured sEMG data
in real patient experiments. The NMPC controller optimizes
the cost functional (9) subject to the system dynamics (8)
and constraints (13). Current (at time t = t0) robot joint
angles and end-effector force are sent to the controller. The
controller performance is evaluated by comparing the muscle
activation inputs/outputs (dashed lines in Fig. 4) and position
inputs/outputs (dotted lines in Fig. 4).

C. Simulations

In this study, the proposed NMPC problem is solved
by the GPOPS-II optimal control package [20]. GPOPS-II
uses orthogonal collocation, which is a direct optimization
method. In this method, both state and control input variables
are approximated by a series of polynomials and fed to a
nonlinear programming (NLP) problem. An interior-point
optimizer (IPOPT) is used to solve this NLP problem.

Two modes of simulations for the assessment of the
proposed controller on the developed human-robot interac-
tion model are performed. 1) Healthy human interaction:
the controller weights are adjusted for the system shown
in Fig. 4 by connecting the controller activation outputs
to the activation inputs of the human-robot rehabilitation
system (i.e. dashed lines are connected to each other). The
adjustment is done by trial and error while checking the con-
troller performance inside the desired criteria (less interaction
force with good tracking). This mode simulates the robot
interaction with a healthy human subject. 2) Dysfunctional
patient interaction: the controller performance is tested by
driving the human-robot rehabilitation system with zero
muscular activations. In this mode, a totally dysfunctional
patient is interacting with the robot. If the activations from
the controller are at the same level as the input activations
(i.e. zero activations), the controller will be successful in
estimating the human’s behavior while interacting with the
robot. The desired trajectory for the simulations is selected
based on the coordination of arm movements, in which the
best performance in an unconstrained point-to-point reaching
task is to generate smoothest motion, and this objective is
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NMPC output (mode-I), and (b) Activations of the human-robot system are zero to simulate a dysfunctional patient interaction with the robot (mode-II).
Position and velocity errors are in the global coordinates (ZX).

determined by minimizing the square of jerk magnitude [21].
This trajectory (rd = [Z(t), X(t)]T , see Fig. 5) is a straight
line with a bell-shaped tangential speed profile inside the
human-robot workspace and defined as:{

Z(t) = Z0

X(t) = X0 + (15δ − 6δ2 − 10)Sδ3
(14)

where S is the path length, and δ = t/tf . The path length
and simulation time are set to S = 20 cm and tf = 2 s,
respectively. The simulation time step is 10 ms, and the
prediction horizon for the NMPC is tph = 100 ms.

III. RESULTS AND DISCUSSION

Results of simulations are presented in Fig. 6. Magnitudes
of motor torques for healthy human interaction mode (mode-
I) are lower than the dysfunctional patient interaction mode
(mode-II). In mode-I, the healthy subject tries to minimize
his/her muscular activities while performing the task; hence,
this reduces robot motor torques compared to mode-II. In
the meantime, the robot tries to help the person while mini-
mizing the robot energy consumption, the subject’s muscular
activities and the end-effector tracking error. in an ideal case,
where there is no relaxation of the internal force constraint
(see equation (11)), the interaction force should be zero.
However, adding relaxing the constraint (see equation (13))
results in less amount of interaction force (see Fig. 6a).

In mode-II, the dysfunctional patient cannot apply any
forces (has zero muscular activities). The NMPC with the
previous objective tries to find the best motor torques, predict
the dysfunctional subject’s muscle activations while tracking
the desired trajectory. Since the robot should overcome
the patient’s dynamics while reducing tracking error, the
interaction force and motor torques increase compared to
mode-I (see Fig. 6b).

In mode-II, the maximum amount of predicted muscle
activations is about 0.003, which is very small and may
be caused by integration errors, round-off calculations, and
relaxation of the internal force constraint. This shows that
the NMPC has predicted the dysfunctional patient’s muscular
activities with a reliable accuracy (the root mean square error
is 9.78e−4). In Fig. 6, the same amount of position and
velocity errors for both modes indicates that the tracking
term in the cost functional is dominant; thus, the NMPC
tries to keep the subject’s hand on the trajectory as much as
possible. Position and velocity errors in the Z direction is
less than the X direction since in the NMPC cost functional,
the robot X direction is more compliant than the Z direction.

IV. CONCLUSION AND FUTURE WORK

In this study, we developed an efficient human-robot
interaction model, which can be integrated with an NMPC,
AI or any type of predictive controller for a human-robot
rehabilitation system. The developed model has 2DOF, and
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its dynamics has a minimal set of equations (8). This model is
used in our proposed NMPC structure (see Fig. 4) to evaluate
the controller performance in two modes: healthy subject,
and dysfunctional patient interaction with the robot while
performing a point-to-point reaching task in the smoothest
possible movement path for the hand. The controller can
successfully predict the muscular activations for the dys-
functional patient while providing the same therapy (tracking
accuracy) to the patient.

In future, controller performance can also be assessed
through running simulations with: 1) a spinal cord injury
patient, whose muscle activation bounds are altered in a way
that the maximum muscle activations in some muscles are
less than 1 [22], or 2) a post-stroke patient, whose activation
dynamics has changed [23]. These models can be generated
through patient-specific FSO simulations.

Our proposed NMPC is implemented using GPOPS-II
because of its variable-order adaptive collocation method for
solving an optimal control problem. Although the controller
performance is excellent in simulations, it is not possible
to use it in our real-time experimental setup because: 1)
GPOPS-II is not fast enough to run in real-time simulations,
2) the robot’s data acquisition card (Q8) which is operable by
Quanser’s real-time control software driver (QUARC) does
not support the GPOPS-II software. For this reason, in our
future work, NMPC (i.e. Newton/GMRES method [24]) will
be used to control the human-robot rehabilitation system in
real-time.

V. ACKNOWLEDGMENTS

This work was funded by the Canada Research Chairs
Program, and the Natural Sciences and Engineering Research
Council of Canada (NSERC). The authors wish to thank
Quanser Inc. for providing the upper limb rehabilitation
robot, and TRI for collaborating.

REFERENCES

[1] S. Bansil, N. Prakash, J. Kaye, S. Wrigley, C. Manata, C. Stevens-
Haas, and R. Kurlan, “Movement disorders after stroke in adults: a
review.,” Tremor and other hyperkinetic movements (New York, N.Y.),
vol. 2, pp. 1–7, jan 2012.

[2] J. Mehrholz, A. Hädrich, T. Platz, J. Kugler, and M. Pohl, “Elec-
tromechanical and robot-assisted arm training for improving generic
activities of daily living, arm function, and arm muscle strength
after stroke.,” The Cochrane Database of Systematic Reviews, vol. 6,
p. CD006876, jan 2012.

[3] C. L. Richards and F. Malouin, “Chapter 13 Stroke rehabilitation:
clinical picture, assessment, and therapeutic challenge,” in Progress in
Brain Research, vol. 218, pp. 253–280, 2015.

[4] A. Turolla, M. Dam, L. Ventura, P. Tonin, M. Agostini, C. Zucconi,
P. Kiper, A. Cagnin, and L. Piron, “Virtual reality for the rehabilitation
of the upper limb motor function after stroke: a prospective controlled
trial.,” Journal of neuroengineering and rehabilitation, vol. 10, p. 85,
jan 2013.

[5] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and
S. Leonhardt, “A survey on robotic devices for upper limb rehabilita-
tion.,” Journal of Neuroengineering and Rehabilitation, vol. 11, p. 3,
jan 2014.

[6] T. Proietti, V. Crocher, A. Roby-Brami, and N. Jarrasse, “Upper-Limb
Robotic Exoskeletons for Neurorehabilitation: A Review on Control
Strategies,” IEEE Reviews in Biomedical Engineering, vol. 9, pp. 4–14,
2016.

[7] L. Marchal-Crespo and D. J. Reinkensmeyer, “Review of control
strategies for robotic movement training after neurologic injury.,”
Journal of Neuroengineering and Rehabilitation, vol. 6, p. 20, jan
2009.

[8] F. Alambeigi, A. Zamani, G. Vossoughi, and M. R. Zakerzadeh,
“Robust shape control of two SMA actuators attached to a flexible
beam based on DK iteration,” in 2012 12th International Conference
on Control, Automation and Systems, pp. 316–321, 2012.

[9] J. Sovizi, A. Alamdari, M. S. Narayanan, and V. Krovi, “Random Ma-
trix Based Input Shaping Control of Uncertain Parallel Manipulators,”
in Volume 7: 2nd Biennial International Conference on Dynamics
for Design; 26th International Conference on Design Theory and
Methodology, p. V007T05A008, ASME, aug 2014.

[10] M. Ding, K. Hirasawa, Y. Kurita, H. Takemura, J. Takamatsu, H. Mi-
zoguchi, and T. Ogasawara, “Pinpointed muscle force control in
consideration of human motion and external force,” in 2010 IEEE
International Conference on Robotics and Biomimetics, ROBIO 2010,
pp. 739–744, IEEE, dec 2010.

[11] N. Mehrabi, R. Sharif Razavian, B. Ghannadi, and J. McPhee, “Predic-
tive Simulation of Reaching Moving Targets Using Nonlinear Model
Predictive Control,” Frontiers in Computational Neuroscience, vol. 10,
p. 143, jan 2017.

[12] P. Brown and J. McPhee, “A Continuous Velocity-Based Friction
Model for Dynamics and Control With Physically Meaningful Param-
eters,” Journal of Computational and Nonlinear Dynamics, vol. 11,
p. 054502, jun 2016.

[13] B. a. Garner and M. G. Pandy, “A Kinematic Model of the Upper Limb
Based on the Visible Human Project (VHP) Image Dataset.,” Computer
methods in biomechanics and biomedical engineering, vol. 2, pp. 107–
124, jan 1999.

[14] B. a. Garner and M. G. Pandy, “Musculoskeletal model of the upper
limb based on the visible human male dataset.,” Computer methods
in biomechanics and biomedical engineering, vol. 4, pp. 93–126, feb
2001.

[15] B. Ghannadi, N. Mehrabi, and J. McPhee, “Development of a Human-
Robot Dynamic Model to Support Model-Based Control Design of an
Upper Limb Rehabilitation Robot,” in ECCOMAS Thematic Confer-
ence on Multibody Dynamics, (Barcelona, Spain), 2015.

[16] E. K. Chadwick, D. Blana, R. F. Kirsch, and A. J. van den Bogert,
“Real-time simulation of three-dimensional shoulder girdle and arm
dynamics.,” IEEE transactions on bio-medical engineering, vol. 61,
pp. 1947–56, jul 2014.

[17] F. E. Zajac, “Muscle and tendon: properties, models, scaling, and
application to biomechanics and motor control.,” Critical Reviews in
Biomedical Engineering, vol. 17, pp. 359–411, jan 1989.

[18] M. K. Lebiedowska, “Dynamic properties of human limb segments,”
in International Encyclopedia of Ergonomics and Human Factors
(W. Karwowski, ed.), p. 317, CRC Press, 2nd ed., 2006.

[19] N. Mehrabi, R. Sharif Razavian, and J. McPhee, “A physics-based
musculoskeletal driver model to study steering tasks,” Journal of
Computational and Nonlinear Dynamics, vol. 10, p. 021012, apr 2014.

[20] M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB Software for
Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive
Gaussian Quadrature Collocation Methods and Sparse Nonlinear Pro-
gramming,” ACM Transactions on Mathematical Software, vol. 41,
pp. 1–37, oct 2014.

[21] T. Flash and N. Hogan, “The coordination of arm movements: an
experimentally confirmed mathematical model.,” The Journal of neu-
roscience, vol. 5, no. 7, pp. 1688–1703, 1985.

[22] D. Garcı́a-Vallejo, J. M. Font-Llagunes, and W. Schiehlen, “Dynamical
analysis and design of active orthoses for spinal cord injured subjects
by aesthetic and energetic optimization,” Nonlinear Dynamics, vol. 84,
pp. 559–581, apr 2016.

[23] S. J. Sober, J. M. Stark, D. S. Yamasaki, and W. W. Lytton, “Re-
ceptive Field Changes After Strokelike Cortical Ablation : A Role
for Activation Dynamics,” Journal of Neurophysiology, vol. 78, no. 6,
pp. 3438–3443, 1997.

[24] N. Mehrabi, S. Tajeddin, N. L. Azad, and J. McPhee, “Application
of Newton/GMRES Method to Nonlinear Model Predictive Control of
Functional Electrical Stimulation,” in The 3rd International Confer-
ence on Control, Dynamic Systems, and Robotics (CDSR’16), (Otawa,
Ontario, Canada), may 2016.

507


