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ABSTRACT
The application of functional electrical stimulation (FES) to

muscles quickly fatigues them. Our research goal is to determine
the optimal control of FES signals that delay the fatigue for as
long as possible. In this research we have used a physiology-
based mathematical model of muscle fatigue, to study the be-
haviour of a musculoskeletal system during a prolonged exer-
cise. To solve the redundant problem of muscle force sharing,
we have used a time-dependent fatigue minimization objective
instead of the usual activation-based minimization criteria. Our
results showed that muscle co-activation, as seen in natural hu-
man motion, does not necessarily minimize muscle fatigue.

NOMENCLATURE
αi Fourier Coefficient
βi Fourier Coefficient
θ Flexion angle
A Non linear activation coefficient
a Muscle activation level
B Non linear activation coefficient
C Muscle fibre transition drive
d Centre of mass distance from elbow
F Muscle force
fl Muscle force-length relation
fv Muscle force-velocity relation
F0max Relaxation rate

∗Address all correspondences to this author

Fmax Maximum isometric muscle force
I Forearm moment of inertia
k f Fatigue rate
kr Recovery rate
Ld Development rate
Lr Relaxation rate
Ma Active muscle fibres
M f Fatigued muscle fibres
Mr Resting muscle fibres
p Exponent in the cost function
R Muscle moment arm
w Total of forearm, hand, and load weights

INTRODUCTION
Locomotion has been one of the key elements in human evo-

lution since early times. Alongside the development of limbs and
musculoskeletal systems, the control mechanism is also evolved.
The human body is a complex multi-degree of freedom system,
actuated by a large number of muscles. The central nervous sys-
tem (CNS) controls this complex system with such an ease that
we hardly notice the challenges. The human actions are remark-
ably adaptive, efficient and robust.

From a mechanical point of view, the human body has more
than the minimum number of muscles required to move a joint.
Therefore, to reach a unique solution for the redundant prob-
lem of muscle force-sharing in the human musculoskeletal sys-
tem, extra criteria need to be considered. The efficiency of mo-
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tions has been the motivation for researchers to seek optimiza-
tion methods to calculate muscle activities during a motor ac-
tion. Minimizing an index of effort is the usual practice to pick
the best solution. Various indices are proposed in the literature to
represent the muscular effort, including muscle force [1,2], mus-
cle activation level [3–7], and physiological energy consump-
tion [4, 5, 8, 9].

Muscle fatigue can also be used as the index to solve for the
unique muscle activities. To the best of our knowledge, mini-
mization of a physiological muscle fatigue index (as opposed to
the activation-based interpretation of muscle effort) has not been
preformed.

Our major motivation for choosing muscle fatigue as the
minimization criterion is the rapid occurrence of fatigue during
application of external electrical pulses to the muscles via func-
tional electrical stimulation (FES). In FES, electrodes are used
to inject electrical current to the muscles, which artificially de-
polarizes the muscle fibre cells, and causes the muscle to pro-
duce force. FES has been shown to be an effective rehabilitation
method [10, 11]. However, its major drawback is the unnatural
recruitment of motor units [12], which expedites muscle fatigue.
Therefore, finding muscle activation patterns that minimize mus-
cle fatigue can have important implications in the optimal control
of FES devices.

To study muscle fatigue, we have used an efficient mathe-
matical model of fatigue [13] in our simulations of musculoskele-
tal systems. This model has the advantage of being simple (un-
like the more complex models such as [14] or [15]), while captur-
ing the physiological process of fatigue. Simpler fatigue models
such as [16] and [17] seem to be useful in ergonomics studies,
but lack the fidelity required in predictive musculoskeletal mod-
els. In this fatigue model, the pool of muscle fibres is divided
into three compartments: the active fibres (generating force), the
rested fibres (not generating force, but are ready to be recruited),
and the fatigued fibres (cannot generate force until recovered).
When the muscle is activated, its active fibres will eventually be-
come fatigued (move to the fatigued compartment); therefore,
our objective is to minimize the number of muscle fibres in the
fatigued compartment.

Since this representation of muscle fatigue is time-
dependent, static optimization [1, 18] is not suitable. Thus, a
dynamic optimization approach is needed to account for changes
of muscle fatigue during the entire exercise/simulation period.
Since muscle fatigue is a relatively slow process, long simula-
tion times are necessary. Therefore, it is infeasible to solve for
all muscle excitation signals at each time-step. To overcome this
challenge, a parametrized signal [5] can be used.

The scenario we have studied in our simulations is the sta-
tionary holding of a weight in hand for a long time. We have used
a mixture of forward and inverse dynamic simulations. Since the
arm is not moving, we have assumed constant joint angles and
zero velocities, and treated the acceleration as a constraint (has
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FIGURE 1. THE MUSCULOSKELETAL FOREARM MODEL

to be zero). The fatigue model, on the other hand, is a forward
dynamic simulation, in which the differential equations of fatigue
development are integrated over time. This approach results in
faster simulations, without sacrificing the accuracy.

To summarize our methodology, we have applied our
fatigue-minimization framework to a one degree of freedom
musculoskeletal model of human forearm. The details of the
musculoskeletal model and the fatigue dynamics are provided
in the next section. We have then used a global parametrization
approach to find the muscle excitation patterns that minimize the
fatigue, while keeping the arm stationary.

METHODS
Musculoskeletal Modelling

A one-degree-of-freedom model of a human arm is consid-
ered in this work (Fig. 1). In this model, the forearm is assumed
to be stationary at 90 degree elbow angle (θ = 90); therefore,
the muscle forces have to balance the weight of the forearm,
hand, and the hand-held weight. The forearm is actuated by
three flexor muscle groups (biceps brachii (BIC), brachiradialis
(BRD), brachialis (BRA)).

The dynamics of the forearm can be represented as:

θ̈ =
1
I

(
∑(FiRi)−wd sin(θ)

)
(1)

where θ is the elbow angle (as shown in Fig. 1). The muscle
forces, Fi, i ∈ {brd,bic,bra}, produce joint moments about the
elbow with the moment arms being Ri. The moment of inertia, I,
and the weight, w, represent the total of forearm/hand/load. I is
calculated with respect to the elbow joint axis, and the weight is
acting at the centre of mass of the system located at a distance d
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TABLE 1. LIST OF SIMULATION PARAMETERS AND THEIR
NUMERICAL VALUES

Parameter value Source

I 1.052 kg.m2 Experiment/anthropometry∗ [19]

d 0.279 m Experiment/anthropometry∗ [19]

w 118.78 N Experiment/anthropometry∗ [19]

R various Garner and Pandy [20]

F0max various Garner and Pandy [20] (modified)

k f 0.016 s−1 Xia and Frey Law [13]

kr 0.0024 s−1 Xia and Frey Law [13]

Ld 60 s−1 Xia and Frey Law [13] (modified)

Lr 60 s−1 Xia and Frey Law [13] (modified)

A 0.5

B 0.5

∗For 95 kg male

from the elbow joint. The numerical values of all the parameters
in this simulation are given in Table 1.

To calculate the muscle force from the neural excitation sig-
nal, a Hill-type muscle model has been used. In our muscle
model, we have combined the formulation developed by The-
len [21] and the fatigue model of Xia and Frey Law [13], which
is explained here briefly.

The muscle force is mainly modulated via the activation
level of the muscle, a. Furthermore, the muscle force is also
affected by its length and shortening velocity according to (2).

F = a fl fvFmax (2)

In this relation, F is the muscle force, and the terms fl and
fv adjust the muscle force based on its length and velocity, re-
spectively. These relations are given in detail in [21] and are
omitted here for brevity. Lastly, the maximum isometric muscle
force, Fmax, is used to define the force production capacity of the
muscle.

We have assumed that the muscle activation level correlates
with the number of active muscle fibres. In the human body,
the CNS recruits the muscle fibres in a specific order, known
as the size principle [22]. At low force requirements, smaller
muscle fibres are recruited, and as the muscle force increases,
larger fibres (that can generate more force) are activated. During
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FIGURE 2. THE NON-LINEAR RELATIONS BETWEEN THE
MUSCLE ACTIVATION LEVEL, a, AND THE NUMBER OF AC-
TIVE MUSCLE FIBRES, Ma. (a) FOR NORMAL RECRUITMENT
ORDER. (b) FOR REVERSE RECRUITMENT ORDER (STIMULA-
TION BY FES)

the application of electrical pulses via FES, the recruitment order
is reversed, as the larger fibres have lower activation threshold.
Therefore, for normal recruitment order, we have used the non-
linear curve of (3) to account for the increased produced force.

a = A M2
a +B Ma (3)

In equation (3), we have used the dimensionless variable Ma
to represent the ratio of the number of active muscle fibres to the
total number of muscle fibres (therefore it ranges from zero to
one). The parameters A and B are used to define the non-linear
relation between the number of active muscle fibres to the acti-
vation (force production) level of the muscle. Figure 2 shows the
two curves for normal and reversed recruitment orders; the re-
verse order can be used to model the activation of muscle during
the application of FES.

The number of active muscle fibres, Ma, changes based on
the neural excitation signal. The three-compartment representa-
tion of [13] has been used here to model the fibre transfers be-
tween the active, rested, and fatigued states. Figure 3 shows the
essence of this model.

The muscle fibres move from resting to active state accord-
ing to the drive C. The fatigue process involves the transfer of
a portion of the active fibres to the fatigued states. Similarly, a
portion of the fatigued fibres move from the fatigued state to the
resting state via recovery process. Therefore, the transfer dynam-
ics can be summarized as:
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FIGURE 3. THE THREE STATES OF THE MUSCLE FIBRES AC-
CORDING TO THE THREE-COMPARTMENT FATIGUE MODEL

dMa

dt
=C− k f Ma (4)

dMr

dt
=−C+ krM f (5)

dM f

dt
= k f Ma− krM f (6)

where Mr, Ma and M f are the resting, active, and fatigued muscle
fibres, respectively. The transfer rates k f and kr represent the
fatigue and recovery rates, and C is the drive expressed as:

C =

Lr(u−Ma) u< Ma
Ld(u−Ma) Ma ≤u< Ma +Mr
LdMr Ma +Mr ≤u

(7)

In the definition of the drive C, the first case represents the
relaxing process, in which the number of active fibres, Ma, is
larger than the demand u. Therefore, C is negative, resulting in
a transition of muscle fibres from active to resting state; the rate
at which the relaxing transition occurs is denoted by Lr. The
second case represents normal force development, when the de-
mand u is more than the current activity Ma, and there is enough
non-fatigued muscle fibres to generate force. In this case some
fibres move from resting state to active state, with the develop-
ment rate being Ld . Finally in the last case, there is not enough
non-fatigued fibres to satisfy the demand; therefore, all the rest-
ing fibres will move to the active state to generate whatever force
the muscle can. The numerical values of the fatigue parameters

are also provided in Table 1. The numerical values for Ld and Lr
are modified from the original values in [13], to match the delays
observed in excitation/activation process [23].

The muscle force production capacity, Fmax in (2), also re-
duces as the number of fatigued fibres is increased. Therefore, to
account for this reduction, the maximum isometric muscle force
at rest, F0max , can be scaled using the number of non-fatigued
muscle fibres as:

Fmax = F0max(1−M f ) (8)

Optimization Method
The usual practice to solve for the muscle forces in a multi-

muscle system is to minimize a criterion—usually an index of
effort. The results of the activation-based optimization pro-
cess have been shown to match experimental electromyograms
(EMG) (as far as the model limitations allow) [1,5]. It is usually
argued that the squared or cubed activation levels represent mus-
cular effort, and minimization of the objective function (9) will
minimize the fatigue.

J = ∑
i

ap
i , p = 2 or 3, i ∈ {brd,bic,bra} (9)

It should be noted that the fatigue process (similar to en-
ergy expenditure) is, in fact, a time-dependent process. Thus, the
static cost function of (9) may not properly reflect the dynamics
involved in the fatigue process. Dynamic optimization [8] can
therefore be used instead of static optimization to consider the
history of signals by minimizing:

J = ∑
i

∫ t f

t0
ap

i , p = 2 or 3, i ∈ {brd,bic,bra} (10)

As an alternative objective function, we have used the dy-
namical fatigue model presented in the previous section to rep-
resent the fatigue dynamics more accurately. Instead of mini-
mizing the activations, we study the history-dependent objective
function of:

J = ∑
i

∫ t f

t0
(M f i)

pdt, i ∈ {brd,bic,bra} (11)
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where p is assumed to be p = 3.
To capture the effects of fatigue development, the model

equations have to be integrated for the entire simulation time. In
this case, the optimization goal is to find the control inputs (mus-
cle excitation signals) for the entire simulation time. However,
finding the control inputs at each time step is infeasible because
of the large number of variables.

To reduce the number of optimization variables, we can ap-
proximate the signal using a parametrized curve, e.g. polyno-
mial, Fourier series, spline/B-spline, or Bezier curves. Polyno-
mials are in general very sensitive to the changes in the parame-
ters, and are not suitable for characterizing our signals. B-spline
(and Bezier as a general case of B-spline) show gentle behaviour
in regard to changes in their parameters, but are more difficult
to implement. Fourier series [4, 24] are easy to implement and
computationally efficient. Thus, we have used Fourier series to
parametrize the muscle excitation signals. The goal of the opti-
mization is reduced to finding the Fourier coefficients (αi and βi
in (12)) that characterize the optimal excitation signals.

u = α0 +
n

∑
j=1

α j sin( jω0t)+β j cos( jω0t) (12)

To summarize the optimization problem, the cost function
(11) is minimized subject to the following constraints:

0≤ ui ≤ 1 (13)

θ̈ =
1
I

(
∑(FiRi)−wd sin(θ)

)
= 0 (14)

i ∈ {brd,bic,bra}

EXPERIMENTS
A 26 year old male subject performed four trials of station-

ary holding of a 10 kg weight, at 90-degree elbow flexion angle
and 90-degree forearm supination; the subject continued the task
until fully fatigued (could no longer hold the weight). Sufficient
time (>10 minutes, as requested by the subject) was given for
recovery between the trials. This exercise is aimed to activate the
biceps the most, and we expected the most fatigue in the biceps.
The subject also confirmed muscle fatigue in his biceps after the
exercise. During the exercise, the EMGs of two muscles (biceps,
brachioradialis) were recorded, and compared against the simu-
lated muscle activities. The collection sampling rate was 4000
Hz, and the recorded signals were zero-biased, full wave recti-
fied, and low-pass filtered. The processed EMG data are shown
in Fig. 4.
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FIGURE 4. THE MEAN AND STANDARD DEVIATION OF THE
RECORDED EMG SIGNALS FOR TWO MUSCLES

TABLE 2. COMPARISON OF THE INDICES FOR THE TWO SIM-
ULATIONS

simulation #1 simulation #2

Index Minimizing activation Minimizing fatigue

∑i
∫ t f

t0 (M f i)
3dt 0.2451 s 0.2305 s

∑i
∫ t f

t0 (ai)
3dt 11.202 s 16.045 s

RESULTS
We have run two sets of simulations in this study to show the

difference between the minimization of time-dependent fatigue
(11) and minimization of activations (10). Figure 5 (left column)
shows the simulation result when the activation-based objective
function of (10) is minimized. To obtain these results, the same
dynamic optimization method has been used. The right column
of Fig. 5 shows the simulation results when the objective function
has been replaced with the time-dependent objective of (11). In
both simulations, a fifth-order (n=5) Fourier series has been used.

As can be seen, the constraints are satisfied in both cases;
however, the muscle activities are drastically different. Clearly,
the co-activation obtained from the activation-based optimization
better matches the experimental EMGs (Fig. 4), and this objec-
tive function seems to be a better index in the prediction of mus-
cle activities. The minimization of the time-dependent muscle
fatigue cannot be the strategy used by the CNS in the control of
actions, even when the muscles are fatigued.

The calculation of the fatigue index (∑i
∫
(M f )

3dt) shows
that the muscle fatigue is indeed lower (see Table 2) when muscle
fatigue has been minimized, which confirms the successfulness
of fatigue minimization strategy. In this case, the strongest mus-
cle (biceps brachii) is loaded the most, and is helped (in shorter
periods) by other muscles. It is also interesting to note that the
fatigue minimization criterion results in higher activity levels.
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J = ∑i
∫ t f

t0 a3
i J = ∑i

∫ t f
t0 (M f i)

3dt
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FIGURE 5. THE SIMULATION RESULTS FOR THE TWO MINIMIZATION OBJECTIVES. (a,b) THE ACTIVE, RESTING, AND FATIGUED
MUSCLE FIBRES FOR THE THREE MUSCLES. LEFT: MINIMIZING ACTIVATIONS, RIGHT: MINIMIZING THE FATIGUE. (c,d) THE VALUE
OF THE EQUALITY CONSTRAINT (14)

.

6 Copyright © 2015 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/08/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



DISCUSSION
We presented a new minimization criterion to find muscle

activations in a musculoskeletal system. We used a dynamical
fatigue model to study the effects of prolonged muscle activities,
and found the muscle activity patterns that minimized muscle fa-
tigue. The results of this research revealed that co-activation of
muscles does not necessarily reduce muscle fatigue (as defined
by our fatigue model) after a prolonged exercise. The optimiza-
tion results showed that muscles experience less overall fatigue,
if the strongest muscle is activated the most, with occasional help
from the other muscles.

Although sharing the load between all the muscles results in
lower individual muscle force, and consequently lower muscle
activities, it manifests differently in muscle fatigue. Our results
showed that the sum of the cubed activations does not result in
the lowest fatigue, nor does the fatigue minimization method re-
sults in the lowest activation levels. In other words, the cubed
activations does not properly represent muscle fatigue. An ex-
tended study is needed to explain the reason behind the intermit-
tent muscle activation patterns, seen in the fatigue-based results
in Fig. 5(b).

Additionally, the findings of this study show that the mini-
mization of muscle fatigue is not the best practice in simulations
where realistic muscle activation patterns are required. Nonethe-
less, such an approach can have its own important implications.
As mentioned in the introduction section, the main motivation
for this research has been the rapid occurrence of fatigue during
the application of FES. According to our results, it is not neces-
sary to co-activate muscles in order to delay the fatigue process;
instead, the strongest muscle can be used as the primary mover,
while other muscles can be used to help the primary muscle in
short intervals.

This argument raises the question if such an activation pat-
tern is beneficial to the patient. The application of FES in re-
habilitation programs is intended to facilitate the neuroplasticity,
by co-stimulating the sensory and motor areas of the brain. How-
ever, this unnatural pattern of muscle activations may conflict
with the existing motor control rules, and may result in maladap-
tation, or delay the neuroplasticity. Further investigations on the
implication of such activation patterns in the application of FES
are necessary to make stronger arguments.

CONCLUSIONS
In this study we used a mathematical model of muscle fa-

tigue to study the effects of prolonged exercise. Since FES is
prone to muscle fatigue, we were motivated to find the neural ex-
citation patterns that minimize muscle fatigue, using a dynamic
optimization approach.

The dynamical fatigue model allowed us to include a
time-dependent objective function instead of an instantaneous
activation-based objective. Due to the dynamics of fatigue, it

was concluded that the fatigue is minimized when the strongest
muscle is activated the most.

To make a stronger argument, however, more experimental
and simulation studies must be conducted. First of all, the va-
lidity of the fatigue model must be tested more rigorously than
the original experiment in [13]. More complex fatigue models
can also be used to see if the same results are obtained. More
importantly, new experiments must be designed to test whether
the recommendations made in this paper are useful in reducing
fatigue after application of FES.
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