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ABSTRACT

Summary: This paper presents a computational framework for the fast feedback control of musculoskeletal

systems using muscle synergies. Method: The proposed motor control framework has a hierarchical structure. A

feedback controller at the higher level of hierarchy handles the trajectory planning and error compensation in the

task space. This high-level task space controller only deals with the task-related kinematic variables, and thus

is computationally efficient. The output of the task space controller is a force vector in the task space, which is

fed to the low-level controller to be translated into muscle activity commands. Muscle synergies are employed

to make this force-to-activation (F2A) mapping computationally efficient. The explicit relationship between the

muscle synergies and task space forces allows for the fast estimation of muscle activations that result in the reference

force. The synergy-enabled F2A mapping replaces a computationally-heavy non-linear optimization process by

a vector decomposition problem that is solvable in real-time. Results: The estimation performance of the F2A

mapping is evaluated by comparing the F2A-estimated muscle activities against the measured EMG data. The results

show that the F2A algorithm can estimate the muscle activations using only the task-related kinematics/dynamics

information with ∼ 70% accuracy. An example predictive simulation is also presented, and the results show that this

feedback motor control framework can control arbitrary movements of a 3D musculoskeletal arm model quickly and

near-optimally. It is two orders-of-magnitude faster than the optimal controller, with only 12% increase in muscle

activities compared to the optimal. Conclusion: The developed motor control model can be used for real-time

near-optimal predictive control of musculoskeletal system dynamics.

1 Introduction
The number of degrees-of-freedom (DoF) and the number of actuators (muscles) in the human body exceeds the minimum

number required to perform various tasks. A task can be completed in a multitude of ways (the degree of freedom problem, [1]),
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and a certain movement can be produced by an infinite number of muscle activation levels (the muscle redundancy problem).
Various studies ranging from kinematic observations of limb movement [2, 3] to neuron activity decoding [4, 5, 6, 7] have
suggested the importance of task-related variables in motor control.

How the muscles are activated to control the task variables is not fully understood. Optimization-based approaches
have been proposed as a possible method to find muscle activations that produce a certain movement [8]. Although these
optimization-based models can estimate the muscle activations reasonably well (e.g. [9,10,11]), their usefulness as a feedback
motor control model is questionable. The optimization framework may work well in the context of well-practised motions,
where the control can be viewed as feed-forward [12,13,14,15]; however, it is not clear whether the nervous system is capable
of continuously solving for the optimal muscle activations during the course of an action. The high computation cost of the
optimization process renders it inapplicable for real-time control.

Non-optimal motion controllers for musculoskeletal systems have also been proposed. Examples include proportional-
integral-derivative (PID) controllers [16, 17] and artificial neural networks (ANNs) [18, 19]. Combinations of these two types
of controllers are proposed in [20] and [21]. These models, however, do not originate from biologically plausible motor
control theory.

Among motor control theories, muscle synergy has gained some traction [22] as a biologically-plausible approach to
simplify the muscle redundancy problem. According to this theory, the nervous system activates the muscles by combining
a few activation sets (known as modules, synergies, or motor primitives). The literature is rich with studies that aim
to extract these building blocks from measured muscle activations. A few examples include studies on healthy human
movements [23, 24, 25, 26, 27, 28], motor learning and adaptation [29, 30], spinal cord injury [31, 32] and cerebral palsy
patients [33], primates [34], frogs [35, 36, 37, 38, 39], and cats [40, 41, 42, 43].

In this large body of research, however, only a few studies have used muscle synergies to build motor control models to
control the movements. In this area, the literature is limited to the study of simple tasks [15, 44, 45, 46, 47]. Among these, [15]
and [46] have used a feed-forward scheme to drive a frog’s hindlimb; [44] and [45] have employed sensory feedback but the
intended tasks were simple, and they did not study multi-DoF movements. Finally, [47] have only implemented a torque-driven
control scheme (with the motor synergies being joint torque profiles).

The literature in this field suggests that the control of movements occurs in the task space; muscle synergy theory is
also proposed as a mechanism to simplify the control process. Despite the attempts made to create motion controllers for
musculoskeletal systems, no comprehensive motor control model is available that includes all of the following features:

1. A feedback controller for the arbitrary movement of a general multi-DoF musculoskeletal system.
2. Task space control
3. Utilization of muscle synergies to simplify control
4. Real-time implementable

In this paper, we propose a general motor control framework that coherently combines all of the aforementioned features
of the human motor control system. It includes a fast feedback controller in the task space for motion planning and error
compensation. This framework is based on an explicit relationship between the muscle synergies and the task-related variables,
which allows for fast estimation of the muscle activations from the task requirements. An important advantage of this
mechanistic framework is its generalizability to arbitrary dimensions and tasks.

The organization of this paper is as follows. In the Method section, we introduce the proposed motor control framework,
its subcomponents, and the underlying assumptions. Afterwards, the experimental trials designed to evaluate the predictive
capabilities of the proposed framework are mentioned. We next demonstrate the capability of the motor control framework as
a feedback motion controller in predictive musculoskeletal simulations using an example 3D upper extremity musculoskeletal
model. In the end, the experimental and the simulation results are presented, which are followed by an in-depth discussion
and conclusions.
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Fig. 1: The hierarchical structure of the proposed synergy-based motor control framework. The high-level controller is
responsible for task space control, and outputs the task space force, Fref. The low-level F2A controller translates this force
command to muscle activations, u.

2 Method
Various observations suggest that the nervous system controls only the task-related kinematic variables [3]. Therefore, we

speculate that the motor control system may store task-related representations of the body. To exemplify the distinction between
the task-related and unrelated kinematic variables, consider a reaching task. Various shoulder/elbow angle combinations can
result in the same hand position. In the reaching task, the hand position in space is the most important feedback to the motor
control system, and individual joint angles are secondary to this task. Conversely, during an elbow flexion/extension task,
the elbow angle is the kinematic variable that is being monitored and controlled. If the shoulder angle changes, the hand
position will also change, but neither of these affect the elbow angle, and thus are irrelevant to the elbow flexion task. This
view separates the control of the degrees of freedom that are related to the task from the ones whose variation does not affect
the task, and eliminates the need for the nervous system to continuously solve an inverse kinematic problem.

Besides the task space representation, muscle synergies can further simplify the control process. An individual muscle,
specifically a bi-articular muscle (muscles that span two joints, e.g. hamstring) may have a very complex function in the joint
or task spaces, but the co-contraction of a number of muscles can potentially have a very clear task-related function. Therefore,
the combination of the task-related representation of the body with the task/synergy relationship has a strong potential to
simplify the motion control of musculoskeletal systems.

The details of the proposed computational motor control framework are presented in section 2.1. We have used an upper
extremity reaching motion as the context to explain this framework. However, the framework is general and can be applied to
any movement. In this context, the goal of the motor control framework is to handle the kinematic and dynamic redundancies
of the arm in point-to-point reaching tasks. A constrained 2D reaching set-up (on a table surface) is used to experimentally
evaluate the method (section 2.2). In a predictive simulation example (section 2.3), we have used a 4-DoF musculoskeletal arm
model for 3D point-to-point reaching. Note that the experiments are used to evaluate the framework, while the simulations
show its potential for predictive motion control.

2.1 Overview of the motor control framework
2.1.1 High-level controller

The hierarchical structure of the proposed motor control framework is shown in Fig. 1. In this framework, the task space
is a vector space that contains all the task-related kinematic variables (e.g. the (x,y,z) position of the hand in a reaching task).
The high-level controller is a feedback controller in the task space, which only deals with the task variables, and disregards
the complexities of the musculoskeletal system. Its role is to compare the current task variables with the target, and define
the reference task space forces ([Fref]p×1 where p is the task space dimension) required to achieve the goal. For the sake of
simplicity, we have chosen a PID controller that handles error compensation. More complex task space controllers are beyond
the scope of the present study, but the implications are discussed in section 4.
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Fig. 2: The schematic of the force-to-activation (F2A) mapping. An arbitrary force vector (black arrow, Fref) can be
decomposed onto the basis set (coloured vectors, Bi) to find the corresponding coefficients. The same coefficients can then be
used to combine the synergies to calculate the muscle activities, u, that result in the reference force, Fref. In this illustration,
the task space is 3D (p = 3), and only four synergies (k = 4) are shown to demonstration the concept.

Note that the task space controller only defines the forces in the task space, which leaves the motion of redundant DoF
uncontrolled. Our approach to separate the control of task and redundant DoFs is briefly explained in section 2.1.3 and fully
provided in [48, 49, §3.2.2].

2.1.2 Low-level controller
Human motions are produced by muscle contractions. Thus, the reference force specified by the task space controller

needs to be translated to muscle activations (see Fig. 1). Muscle synergies can been used to simplify the calculations in
this force-to-activation (F2A) mapping. Essentially, we view muscle synergies as the pre-calculated sets of solutions for the
muscle force sharing problem (perhaps obtained through evolution or practice). The details on how one might obtain these
synergies will be provided later in this paper, but for now, we assume the synergies are known. The way our F2A mapping
works is depicted in Fig. 2 and described below.

We assume that the motor control system contains k synergies for a given task, represented in our model by the matrix
Sm×k, where each column of S contains the relative activation of the m muscles in a single synergy (i.e. si, j is the activation
level of the ith muscle in the jth synergy). It is also assumed that the effect of each synergy in the p-dimensional task space
is known (e.g. we know that activation of synergy 1 in Fig. 2 results in a task space force [B1]p×1). The collection of these
synergy-produced force vectors can be viewed as a basis set, Bp×k = [B1,B2, . . . ,Bk], for the task space. In other words, any
arbitrary force vector in the task space can be created by a linear combination of these basis vectors. Thus, the nervous system
can decompose the reference force vector, Fref, onto this basis set, to calculate the coefficients (i.e. intensity) of each basis
vector. This process is analogous to solving for the coefficients vector Ck×1 in the following equation:

[Fref]p×1 = Bp×kCk×1 (1)

which can be solved using a non-negative least-squares algorithm.

The basis vectors combined with the coefficients ci produce the reference force. Likewise, the synergies (that produce the
basis vectors) combined with the same coefficients result in the muscle activations that produce the reference force; i.e.,

um×1 = Sm×kCk×1 (2)



is the solution of the muscle force sharing problem. The proposed F2A mapping has an important implication: it replaces the

costly and time-consuming non-linear optimization process with a linear vector decomposition problem to solve the muscle

force sharing problem. As a result, it is possible to implement this method for real-time motion control. Although this method
may not always give optimal results, our dynamics simulation results (section 2.3) show that they are near-optimal. The block
diagram of the F2A process is also shown in Fig. 2.

2.1.3 Control of redundant and non-redundant degrees of freedom
The proposed framework can be applied to a system without kinematic redundancy, where the motion in the task space

fully defines the kinematics of the system. However, in kinematically redundant systems, there are extra degrees of freedom
that can vary without affecting the task space motion. To control the task-related kinematics and leave the redundant ones
uncontrolled, it is possible to define synergies that produce forces only in the task space (an example method for achieving
this requirement is presented later in section 2.3.2). In this way, the employed synergies do not induce any extra motion in the
redundant space, and allow it to move as a natural result of interaction with the environment.

If it is necessary to control these redundant DoFs (e.g. to reach to an object in a certain angle), we can employ an extra
set of synergies that produce forces only in the redundant space. These two orthogonal sets of synergies (the task space ones
and the redundant space one) enable the framework to separately control the movement in the two spaces (see [48, 49, §3.2.2]
for more details).

2.1.4 The underlying assumptions
Positive-decomposition. Muscles are pull-only actuators. Thus, only a positive muscle activation level is meaningful.

The same property is also assumed for a synergy; i.e. a synergy cannot have a negative coefficient. Therefore, the vector
decomposition mentioned above has to be a positive decomposition (ci > 0). This assumption itself implies that at least
four synergies are needed to positively decompose a force vector in the 3D task space (in general, p+ 1 synergies for a
p-dimensional task-space).

Task-specific synergies. We have assumed a tight relation between the synergies and the task (as was previously
suggested in [45]). The term task-specific synergies means that, for example, the synergies employed during a 3D reaching task
(controlling the hand position) are different from the ones during elbow flexion (controlling elbow angle). The uncontrolled
manifold theory [3] can help distinguish between different tasks by identifying the actively controlled variables.

Principle of superposition. Our method (and muscle synergy theory in general) relies on the principle of superposition.
Under certain assumptions (body is stationary, and the elasticity of the muscles are neglected), the relationship between the
muscle activities and the resulting task space force is linear, and superposition can be applied—the effect of co-activation of
multiple synergies (i.e. the total task space force) is the same as the summation of the effects of individual synergies (i.e. the
basis vectors). When the velocities are not negligible, it is possible to account for the non-linear dynamics using a dynamic
model of the arm [49, 50], which however, is not included in this paper.

2.2 Evaluation of the framework (F2A mapping) with human experiments
This section describes the experimental procedure designed to evaluate the performance of the computational motor

control framework. Specifically, we evaluated how well the F2A mapping could recreate muscle activities only using the
task space measurements. Therefore, it was assumed that the movements were governed by a high-level controller; the
nature of this controller was not the focus of this experiment. Instead, the goal was to employ the F2A methodology to
estimate the muscle activities from the measured task space kinematics/dynamics, and compare the results with the measured
electromyography (EMG) data.

For this purpose, the set-up shown in Fig. 3a was used. This set-up included a two-DoF haptic robot (Quanser Inc.) that
allowed motion in the horizontal (table top) plane. The subject was asked to hold and move the robot end-effector. Therefore,
the task space was the 2D (x,y) position of the hand/end-effector. The end-effector was equipped with a six-axis force sensor
(Nano25, ATI Industrial Automation, Inc.) to measure the task space forces. The end-effector position was also measured
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Fig. 3: (a) The experimental set-up includes a 2DoF haptic robot to measure force/position in the 2D task space. The arm is
lifted above the table surface to support its weight and minimize friction. (b) The set-up configuration in phase one of the
experiment. The robot is locked in any of the 9 points in the task space, and the subject has to match the target forces by
pushing against the robot.

by the robot. The subject’s arm was suspended to remove the effects of gravity and arm/table friction (arm does not move
off-plane). The robot’s control loop and the force sensor had a 500 Hz sampling rate.

Surface EMG data from seven muscles (anterior/middle/posterior deltoid, biceps brachii, brachioradialis, and long/lateral
heads of triceps brachii) were recorded at 1926 Hz (Trigno Wireless EMG, Delsys Inc.). The EMG data was processed
with the common procedure: raw EMG→ zero-mean→ band-pass filter with 6th-order Butterworth and 5-800 Hz cut-off
frequencies→ full-wave rectify→ low-pass filter with 6th-order Butterworth and 2 Hz cut-off frequency. The bandpass filter
cut-off frequencies were chosen so as to remove the biases in the signals while retaining as much information as possible
using Fast Fourier Transform (FFT). The low-pass filter (linear envelop) cut-off frequency was fixed at 2 Hz to obtain smooth
signals, considering that the tested actions were free of rapid changes in muscle activities. The EMGs for each muscle were
normalized with respect to the maximum voluntary contraction (%MVC) [51].

The experiment was conducted in two phases. In phase one (the off-line phase), the synergies were obtained and stored. In
phase two (the on-line estimation phase), these synergies were used in the F2A algorithm to reconstruct the muscle activities
during arbitrary motions.

Seven young and healthy subjects (five male, two female, average age 26.7±2.9, all right-handed) participated in the
experiment. All subjects reported no musculoskeletal disorder in the past 2 years. This study was carried out in accordance
with the recommendations of the Office of Research Ethics at the University of Waterloo with written informed consent from
all subjects.

2.2.1 Phase one: off-line calculation of the synergies
The robot end-effector was locked in 9 different positions in the task space (a 3× 3 grid, with the order shown in

Fig. 3b), and in each position, the subject isometrically applied forces to the end-effector. A computer display visualized the
measured force vector as a point, which the subject had to match with multiple targets. The target forces were 12 N along 15
equally-spaced directions (in a circular pattern, Fig. 3b) in the horizontal plane. The subject had to hold the force for at least
2 s within 10% accuracy range to successfully match a target. The subject was instructed to rest their arm on the armrest
throughout the experiment.

In every tested posture, the EMG data from seven muscles and for each force direction was averaged in the 2-s window



prior to the successful target matching. The collection of these data for all 15 targets formed the data matrix A7×15.

According to muscle synergy theory, the data matrix A is produced by a linear combination of a small number of synergies.
Non-negative matrix factorization (NNMF, originally proposed in [52]) has widely been used to extract the synergies from
such a data matrix, and is used in this work to define the synergies. It must be noted that any alternative method to define the
synergies is applicable as well (for a review of alternative factorization algorithms see [53]). The NNMF finds the synergy
matrix S and the coefficient matrix C with non-negative elements, such that their product best approximates the matrix A.

A7×15 ' S7×kCk×15 (3)

or

minimize: e = norm(A7×15−S7×kCk×15) (4)

with k being the number of muscle synergies.

In this formulation, each column of the synergy matrix represents a single synergy; si, j contains the activity level of the
ith muscle in the jth synergy. A column in the coefficient matrix contains the coefficients of the synergies for a specific target
(ci, j is the coefficient of the ith synergy for the jth target).

The basis set B corresponding to a synergy matrix was also obtained by solving the equation:

F2×15 = B2×kCk×15 (5)

using a least-squares method, where the matrix F2×15 contained the measured 2D force vectors in the 15 directions.

Applying this process to the data matrix A and force matrix F in another posture resulted in new synergy/basis matrices.
Therefore, this procedure gave us posture-dependent synergies and bases defined as S = S(x,y) and B = B(x,y), with (x,y)

being the hand position in the task space.

2.2.2 Phase two: motion trials and on-line estimation of muscle activation

Next, the subject performed multiple point-to-point reaching motions in the 2D task space. The movement resembled
10 repetitions of drawing a five-pointed star, where each repetition included five point-to-point segments of length 28 cm.
As a visual feedback, the subject could see the current location of the hand on the screen and the next target. No instruction
regarding the speed of motion was given to the subject, but they were asked to avoid sudden movements and perform smooth
movements. To increase the muscular activities, the robot resisted the motion similar to a linear damper with damping
coefficient of 250 N.s/cm The task space forces and positions were recorded in synchrony with EMG during the movements.
At each point during the motion, the posture-specific synergy and basis matrices were estimated by interpolating the previously
obtained matrices (using cubic spline interpolation). Then, the measured force vector was decomposed onto the basis set
(similar to (1)) to calculate the corresponding coefficients, which were multiplied by the synergy matrix to reconstruct the
muscle activities. The only data available to this mapping were: the real-time measurement of the task space force (Fx,Fy) and
position (x,y), as well as the synergy and basis matrices (S and B) previously obtained off-line.

To quantify the estimation performance, the variance accounted for (VAF) [54, 55] is calculated:

VAF = 1− ∑(u− û)2

∑u2 (6)
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Fig. 4: (a) The schematic of the 3D 4-DoF arm model. (b) The 3D task space, containing (x,y,z) position of the hand, and the
redundant space containing the kinematic variable φ. Here, the rotation specified by the angle φ is irrelevant to the reaching
task.

where the summation is across the entire duration of the movements. û denotes the estimated muscle activities using
the presented synergy approach, which is compared against the gold standard, u (in this case the measured EMGs). The
experimental results are presented in section 3.

2.3 The motor control framework for predictive musculoskeletal simulations
The framework’s computational efficiency makes it an ideal platform to produce fast dynamic simulations of muscu-

loskeletal systems without the need to define any motion as the input. In this section we show a simulation example to
demonstrate the potential of the proposed motor control model as a predictive feedback motion controller for musculoskeletal
simulation. In contrast to the 2D experimental setup, we have used a 4-DoF musculoskeletal arm model; the goal is to reach
arbitrary targets in 3D space with the hand. Because of the differences in the experimental and simulation set-ups, the two sets
of results are not compatible and are not compared in the Results section.

2.3.1 The musculoskeletal model
A 3D musculoskeletal arm model [56] is used to demonstrate our motor control framework (see Fig. 4a). In this model

the torso is fixed, to which the upper arm is connected via a spherical joint (3-DoF). The elbow is a 1-DoF revolute joint
connecting the forearm/hand to the upper arm (wrist is fixed). As a result, this 3D arm model has four DoFs.

This arm model is actuated by 15 muscles (listed in [56]), which are modelled using the Hill-type formulation [57]. For
simplicity, only the contractile element of the muscle model is implemented. The input to the model, u, is the set of muscle
activations, which result in muscle forces that generate the motion (forward dynamics simulation).

In this example, the intended task is to reach to an arbitrary target in 3D space with the hand. Therefore, the task space

is a 3D vector space containing (x,y,z) variables. Since the arm model has four DoFs, there remains one extra DoF that is
unrelated to the task; thus, the redundant space is a 1D vector space containing the extra variable (φ in Fig. 4b).

To implement the motor control framework in a musculoskeletal simulation context, we first need to define the synergies
appropriately.

2.3.2 How to calculate synergies
The presented motor control framework can be used with any sets of muscle synergies, as long as they are rich enough

to positively span1 the intended task space. Any method that calculates such synergies and bases may be used to work with
this framework. Because the number of muscles and task spaces are different in the 3D reaching simulating and the 2D
experiments, the experimentally obtained synergies cannot be used here. Below we explain an off-line method to calculate and
store the synergies in a simulation setting, which can then be used in feedback control of movements in forward dynamics

1by positive span we mean that any arbitrary vector can be positively decomposed onto the basis set



simulation of musculoskeletal systems. It must be noted that task space acceleration vectors were used instead of force vectors
due to the ease of implementation (therefore, we have acceleration-to-activation, or A2A mapping in the simulations instead
of F2A).

A large number of optimization problems are solved to mimic the human evolution/practice process to obtain and store
the synergies prior to the feedback control process. At a given posture (defined by (x,y,z,φ), see Fig. 5), the best combination
of muscle activities that produce a certain task space acceleration is found through an optimization process. The optimization
algorithm (in our simulations we used sequential quadratic programming) finds the vector of m muscle activations, um×1, that
minimize the following objective function:

um×1 = argmin
{

J = ω1
1

|ades|2
|ades−a|2 +ω2uT u

}
(7)

Here, J is the objective function that is minimized. ades and a are the desired and actual hand acceleration vectors,
respectively. ω1 and ω2 are the weighting factors that balance the importance of the tracking error and the muscular effort
terms. The optimization is subjected to the constraints:

0≤ ui ≤ 1 , i ∈ {1, ..,m} (8)

and

φ̈ = 0 (9)

The constraint (9) forces the solution to produce zero acceleration in the redundant space. This assumption simplifies the
computations when the intent is to control the task space movements only.

The same optimization process is repeated for n = 30 different acceleration vectors in various directions (see Fig. 5). The
solutions of these optimization problems are then gathered in a matrix A as:

Am×n = [u1,u2, . . . ,un] (10)

This data matrix can then be broken into the synergy and coefficient matrices using NNMF:

Am×n ' Sm×kCk×n (11)

where each column of the synergy matrix represents a single synergy; si, j contains the share of the ith muscle in the jth

synergy.

Applying the NNMF to the solution matrix A gives a set of synergies at the current posture. If the entire process is
repeated for various hand positions/orientations in the working space, a set of posture-dependent synergies can be defined (i.e.
S = S(x,y,z,φ)). In the simulations, we solved for the synergies in a 4-dimensional grid of 5×5×5×6 points corresponding
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[u] = argmin {J}

Posture 1: (x ,y ,z ,φ )1 1 1 1

Posture 2: (x ,y ,z ,φ )2 2 2 2

φ=0
..

ades

Posture 3: (x ,y ,z ,φ )3 3 3 3

...

Fig. 5: A large number of optimization problems are solved off-line to obtain the synergies that are used in the simulations. In
a given posture, an optimization is solved to find the optimal muscle activations that produce each of the desired task space
accelerations (ades). The same process is repeated for a variety of postures.

to (x,y,z,φ) dimensions.

These posture-dependent synergies and the corresponding task space basis vectors are assumed to be stored in the nervous
system. During motion control, they are recalled and interpolated (cubic spline method) in the A2A mapping to estimate
the synergy coefficients, and consequently muscle activations. The constraint φ̈ = 0 in (9) ensures that the set of activations
obtained from the A2A mapping does not induce extra acceleration in the redundant space (i.e. to leave it uncontrolled). This
assumption also simplifies the computations when the redundant DoF needs to be controlled as well [48, 49, §3.2.2].

2.3.3 Simulation study design
In the presented example, the motor control framework is used to control the motion of the 3D and 4-DoF musculoskeletal

arm model. The target motion in the simulation is a 20 cm hand elevation in the z direction (against gravity). Two feedback
control methods are used to produce this motion: the proposed motor control framework, and a non-linear model predictive
controller (NMPC) [58]. The NMPC is an optimal (but computationally expensive) feedback controller that is considered as
the baseline, against which the synergy-based controller is compared. The NMPC is implemented with a 3-step prediction
horizon. In each time step, a sequential quadratic programming algorithm calculates the optimal muscle activations that
minimize the following cost function:

Jnmpc = w1

m

∑
i=1

(∫
u2

i dt
)
+w2

∫
(ep)

2dt +w3

∫
(ev)

2dt +w4

∫
(eφ)

2dt (12)

In this cost function, which is calculated for the upcoming prediction window, the first term is responsible for keeping the
muscle activations low, while the second and third terms ensure tracking of the reference trajectory (ep and ev are the position
and velocity error). The last term (

∫
(eφ)

2dt) handles tracking in the redundant space. The weighting factors, wi’s, indicate the
relative importance of the cost function terms. Numerical values of the PID (the high-level controller in the framework) and
NMPC parameters are given in Table 1.



Table 1: The musculoskeletal simulation parameters

Parameter value

Kp = 3000 (s−2)

PID coefficients Kd = 100 (s−1)

Ki = 1500 (s−3)

w1 = 1(s−1)

NMPC weightings w2 = 1×105 (s−1m−2)

w3 = 1×104 (sm−2)

w4 = 1×105 (s−1)

The simulations are performed on a desktop computer (CPU Intel Core i7-4790, RAM 16GB, 64-bit Windows 7) running
MATLAB/Simulink 2014b. The musculoskeletal model was developed in MapleSim 7, which was exported as C-code to run
in MATLAB.

3 Results
In this section we present the results corresponding to the experimental trials and the simulations. The 2D experimental

results are meant to evaluate the motor control framework performance in estimating muscle activations from the task space
measurements, while the 3D simulation results show its application to predictive musculoskeletal simulations. The simulation
and experimental results illustrate different aspects of the proposed method, and are not meant to be compared.

3.1 Experimental results
The detailed experimental results for subject #2 are shown here (Fig. 6). Applying the NNMF algorithm to the posture-

dependent EMG data-sets results in the posture-dependent synergies that are shown in Fig. 6a (the results with three synergies,
k = 3, are shown here). Each surface in the visualization of the synergies shows the variation of a muscle’s activation level in
a synergy across various positions in the 2D task space. Fig. 6b shows the corresponding synergy-produced basis vectors in
nine representative positions in the 2D task space. The point-to-point motion trials in the 2D task space (average velocity
3.8±0.6 cm/s for this subject) and the associated task space forces are shown in Fig. 6c. A segment is the movement from
one target to the next (5 targets in total), and the motion in each segment was repeated 10 times. Finally, the measured EMGs
during the movements are shown in Fig. 6d, super-imposed by the activations estimated from the presented method. The
calculated VAF (6) for each muscle and in each movement segment is given above each individual plot. The numbers on the
right and bottom of the panels show the weighted average VAF, calculated as:

VAFave =
∑(emg.VAF)

∑emg
(13)

where emg is the average value of the recorded EMG for a muscle during a segment of the motion. The summations in (13)
are taken across various segments for a given muscle (resulting in average numbers shown below the panels for an individual
muscle), or various muscles for a given segment (resulting in average numbers to the right of the panels for each segment), or
all segments and muscles (resulting in the total VAF on the bottom right corner).

The motor control framework presented here is a general method; however, the results (specifically the synergies) are
subject-specific, and inter-subject comparison is difficult. Therefore, only the details of one subject’s results are shown here
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Fig. 6: The 2D experimental results. The data belongs to subject #2. (a) The synergies obtained by applying the NNMF to
the experimentally measured EMG data. Each plot shows how the activity level of the muscles (color coded) in a synergy
change across posture. (b) The basis vectors associated with the posture-dependent synergies. (c) The motion and force in the
task space during the motion trials. The motion is divided into 5 segments (color coded). (d) The measured EMG and the
reconstructed activations for the seven muscles and for each motion segment. The grey and black lines, respectively, show
the measured EMG data, and the reconstructed muscle activations. Each line represents a single trial. The numbers in each
plot give the calculated VAF. The bold numbers on the right and the bottom are the average for the row or column of data,
respectively. The single large number on the bottom right is the average of all VAF measures.



Table 2: Calculated total VAF values in the experimental evaluation of the framework

Subject # VAF (%) Subject # VAF (%)

1 87.1±0.6 5 76.8±0.2

2 71.6±0.3 6 70.6±0.2

3 73.5±0.7 7 60.9±0.1

4 47.3±0.5

Average of all subjects: 69.7±12.6

Table 3: The timing details of the motor control framework and the optimal controller to simulate 1.5 s motion

Simulation type Optimal Synergy

Musculoskeletal model run time 47 ms 47 ms

Low-level (A2A): 702 ms

Controller run time 55567 ms High-level (PID): 31 ms

Total: 733 ms

(the results for other subjects are available in the supplemental material). To make inter-subject comparison, the calculated
average VAF is used. Table 2 gives the average VAF for all seven subjects. Because each run of NNMF may result in a
different synergy set, 10 runs are performed and the mean±standard deviation of the results are reported.

3.2 Simulation results

The application of the proposed motor control framework to predictive musculoskeletal simulations is presented here.
The simulation set-up is as described in section 2.3.3, and the results are shown in Fig. 7. Fig. 7a visualizes the five extracted
synergies and how the activation level of the muscles in the synergies change across various postures. Fig. 7b shows the
synergy-produced basis vectors in the 3D task space in a representative posture (x,y,z,φ) = (15cm,−20cm,−20cm,0◦).

Two control methods are compared in Figs. 7c and 7d: the synergy-based motor control model and the optimal NMPC,
denoted by “synergy” and “optimal”, respectively. The arm motion resulting from the two controllers is shown in Fig. 7c,
along with the muscle activations presented in Fig. 7d. Note that the synergy-based controller leaves the redundant DoF (φ)
uncontrolled, and the arm falls due to gravity. To obtain comparable results with the optimal controller, it was required to
follow the same φ trajectory.

The muscle activations in Fig. 7d show that the motor control framework is able to predict activity of the highly-activated
muscles (e.g. deltoid) as well as the less active ones (e.g. supraspinatus). However, there is occasional overestimation (e.g.
triceps and pectoralis major). The results show that the physiological effort (=

∫
uT udt) from the synergy controller is only

11.6% more than that of the optimal controller, while the computation time reduced by two orders of magnitude(the timing
details are given in Table 3).

3.3 Number of synergies

The effect of the number of synergies on the framework performance (VAF in (6)) as well as the NNMF error (e in (4)) is
shown in Fig. 8. The gold standard in the calculation of VAF for the experimental and simulation results are, respectively, the
EMGs and optimal muscle activations. The results in Fig. 8a represent subject #2’s data.
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Fig. 7: The 3D simulation results. (a) The synergies visualized in the task space. Each plot shows the activity level of the
15 muscles (color coded) in a synergy, as the hand moves in the task space. The x and y axes indicate the position of the
hand (cm), and the vertical axis shows the muscle share in a synergy. These plots belong to the posture where the hand’s
vertical position is 20 cm below the shoulder (z = −0.2 m), and φ = 0◦. More detailed synergy plots are available in the
supplementary materials. (b) The basis vectors in the task space. The units are m/s2. These basis vectors belong to the posture
(x,y,z,φ) = (15cm,−20cm,−20cm,0◦). (c) The trajectory for the hand position (moving 20 cm upwards), the tracking error,
and the motion in the redundant space. Two control methods are compared: an optimal controller, and the synergy-based
motor control model. (d) The muscle activations resulting from the two control methods.

4 Discussion

The presented motor control framework is a computational tool developed to facilitate predictive forward dynamics
musculoskeletal simulations. Unlike other synergy-based forward dynamics simulations (e.g. [9, 12, 15, 59]), in which a
feed-forward control scheme was used, the presented framework employs feedback information to calculate and adjust
the muscle activation levels. A key advantage of this motor control framework is that it can handle feedback control of
musculoskeletal systems in real-time and near optimally. This motor control model was found to be capable of estimating
muscle activities that are close to the measured EMG data (VAF ≈ 70%), and optimal activations (VAF ≈ 90%).
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Fig. 8: The effect of number of synergies on the performance of the motor control framework. (a) The experimental results
belonging to subject #2. (b) The simulation results. Because the NNMF is sensitive to the initial guesses, multiple runs of
NNMF are performed. The plots show the mean and standard deviation of the results. When a small number of synergies are
used, the variability is small.

4.1 Task space controller
The presence of task-related kinematics in the motor control system is widely reported in the literature [4, 5, 6, 7, 60, 61,

62, 63]. Our motor control framework is inspired by these observations and creates a simple feedback control loop solely
based on the task-related variables. In the example simulation shown (3D reaching), the obvious choice of the task-related
kinematics was the hand position in space. However, in more complex movements (e.g. sit-to-stand), the choice of task space
is not so obvious. The uncontrolled manifold theory [3] provides a useful tool to rank the kinematic variables and identify the
actively controlled ones.

It is also worth noting that subtle changes in the goals of the task may alter the underlying control mechanisms. For
instance, during a normal reaching task, the goal is to move from one point to another; however if a joint is causing pain,
another important goal is to restrict its motion. In our framework, this would be a new and more complex task space, which
would engage a different set of high/low level controllers.

Similar to the idea proposed in [44], the task space controller chosen in our simulations was an error-driven PID controller.
Despite showing acceptable results in the simulations, it might not capture important properties of the human motor control
system, such as prediction/expectation, adaptability, and robustness. More complex feedback controller types, such as optimal
(e.g. Model Predictive Controller [58], or Linear Quadratic Gaussian [64]), or robust/adaptive controllers, may be used to
model the task space controller.

4.2 Force-to-activation mapping
The force-to-activation mapping presented here is a key component of the computational motor control framework.

This methodology assumes no restriction on the number of DoFs, the task space dimensions, and whether the system is
kinematically redundant or not. Our results showed its application to 2D (experimental) and 3D (simulation) task spaces.
Since the two task spaces in the experiment and simulations were different, two separate sets of synergies were used (the same
set could not be used). Furthermore, the presented simulation results should be viewed as an example of motion control for a
complex musculoskeletal system, and are not meant to be compared against the experimental results.

The performance of the F2A mapping depends on the number of synergies and how well the task space is spanned by the
basis vectors. It was shown in [55] that a low decomposition error (e in equation 4) did not translate well to the task space
performance. The NNMF does not take into account the task space (i.e. the basis vectors in Figures 7b and 6b), and may
result in a non-optimal distribution of basis vectors when a high number of synergies are used. Therefore, counter-intuitively,
more synergies do not improve the overall performance, despite the decrease in NNMF error (Fig. 8).



Posture dependency is another important assumption in our motor control framework. The generalizability of static
synergies across various postures has been discussed before (e.g. in [42, 40]). However, the added flexibility of the
posture-dependent synergies (as opposed to the fixed ones) allows for a smaller number of synergies to be used. The
posture-dependence assumption is in agreement with the observations in [65] that the habitual muscle activation patterns to
produce the same amount of wrist force change with its pronation angles.

The posture dependence feature requires the synergies to be calculated at a number of postures in the work space. In
general, the quality of control is expected to increase by solving for the synergies at a larger number if postures. However,
increasing the number of data points for synergy interpolation is costly. The number of postures to consider depends on how
large the intended workspace is, and how fine the mesh should be to give good interpolated results. The simulated synergies in
Fig. 7a were obtained with a 10 cm mesh spacing in the task space. A finer mesh did not significantly improve the results.

The VAF values reported in Fig. 6d for individual muscles and segments show excellent prediction for some muscles
(e.g. > 90% for triceps muscles during segments 1 and 4 where they are the major movers), and poor prediction for some
others (e.g. biceps and brachioradialis in segment 3 where they are inactive.) The inconsistency between the measurement and
prediction is mostly attributed to the unreliability of measured EMG (e.g. at low activity levels; also note the inconsistency of
the EMG data in various repetitions for anterior deltoid in Fig. 6d).

There are limitations in the F2A mapping, including its inability to account for antagonist muscles co-contraction
(e.g. for limb stabilization as proposed in [66]), secondary movements (e.g. the movements in the redundant degrees of
freedom, [48, 49, §3.2.2]), and velocity dependence of muscle force [57]. The comparison between the experimental EMG
and the reconstructed EMG in Fig. 6d reveals that the framework usually underestimates some muscle activities, which may
be due to these factors. Although it may be possible to consider stabilizing synergies (ones that produce zero task space force),
this idea was not investigated in this paper.

4.3 Acquiring the synergies and the relation to motor learning
Muscle synergies, if they exist, are probably formed either through evolution (prior to the movement) or practice

(concurrent with the movement). In this paper, an off-line learning method was implemented; however, this assumption
does not affect the generalizability of the motor control framework. The synergies should be structured to result in the best
performance in doing a task. We made our arguments in the simulations based on physiological effort minimization, because a
well-practised motion (such as reaching) is physiologically efficient. Furthermore, it was shown in [67] that muscle synergies
obtained from the optimal activation date resembles those obtained from EMG data.

Another important performance index that needs to be addressed is the robustness/generalizability in novel conditions (as
observed in [68]). In this research, the synergies were assumed to be task-specific, which raises the question whether new
synergies are formed for a new task, or if the general-purpose synergies would still be used.

We previously showed [45] that for a 1D task space (e.g. rotating a steering wheel), two task-specific synergies are
enough to achieve the optimal control performance; for the more general 3D task, five synergies only approximate the optimal
results. One may link the gradual performance improvement observed during motor learning to this task-specificity. Our
thought regarding motor learning is that the nervous system may initially try to control a novel task (e.g. playing violin with a
bow, which has very specific task requirements) with the available synergy sets (e.g. 3D reaching synergies). As the task
is repeated, the nervous system explores the neighbouring solutions, and eventually learns a new synergy set (as well as a
fine-tuned task space controller), until a “good-enough” solution is reached [69].

4.4 Applications of the framework
There are important applications for the proposed motor control framework. As was shown, such a controller is a necessity

in many musculoskeletal simulations. The proposed motor control model can be a viable tool for the fast feedback motion
control of a musculoskeletal system with near-optimal performance. Moreover, it has the advantage of being generalizable
to control any system. One example of predictive musculoskeletal simulation was presented in this paper. More example
simulations with different task spaces are available for the interested reader in [49]. The presented framework may also be



used as a computational tool to investigate motor control theories.

In model-based control of prosthetic and orthotic devices, it is essential to have a model that behaves similarly to the
human motor control system. Control of limb movement via functional electrical stimulation (FES) of the muscles requires a
real-time optimal feedback controller that can handle the complexities of the human musculoskeletal system [70, 71].

In another application, synergy-based myoelectric control of assistive devices has been shown to be a promising
approach [72, 73, 74], and the task/synergy relationship presented in this motor control framework seems well-suited for such
purposes.

5 Conclusions
In this paper we presented a feedback motor control framework based on muscle synergies. The hierarchical structure

of the framework allowed for fast feedback control of the movements, by separating the control of the task space variables
from the complexities of the musculoskeletal system. The bridge between the task and muscle spaces was a mapping that
converted the force signals in the task space to muscle activation. This mapping used posture-dependent muscle synergies and
the corresponding basis vectors for the force decomposition. We showed two separate sets of results; the experimental results
showed acceptable performance of the method (approximately 70% accuracy), while the simulation results showed strong
potential of the proposed motor control framework for the fast and near-optimal feedback control of musculoskeletal systems.
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Sup. Fig. 1: Subject #1’s results. (a) Detailed muscle activity levels in the synergies (b) basis vectors (c) motion trials (d)
EMG measurements and reconstruction.
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Sup. Fig. 2: Subject #2’s results. (a) Detailed muscle activity levels in the synergies (b) basis vectors (c) motion trials (d)
EMG measurements and reconstruction.
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Sup. Fig. 3: Subject #3’s results. (a) Detailed muscle activity levels in the synergies (b) basis vectors (c) motion trials (d)
EMG measurements and reconstruction.
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Sup. Fig. 4: Subject #4’s results. (a) Detailed muscle activity levels in the synergies (b) basis vectors (c) motion trials (d)
EMG measurements and reconstruction.
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Sup. Fig. 5: Subject #5’s results. (a) Detailed muscle activity levels in the synergies (b) basis vectors (c) motion trials (d)
EMG measurements and reconstruction.
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Sup. Fig. 6: Subject #6’s results. (a) Detailed muscle activity levels in the synergies (b) basis vectors (c) motion trials (d)
EMG measurements and reconstruction.
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Sup. Fig. 7: Subject #7’s results. (a) Detailed muscle activity levels in the synergies (b) basis vectors (c) motion trials (d)
EMG measurements and reconstruction.
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