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Abstract Natural behaviors have redundancy, which implies that humans and animals can 
achieve their goals with different strategies. Given only observations of behavior, is it possible 
to infer the control objective that the subject is employing? This challenge is particularly acute in 
animal behavior because we cannot ask or instruct the subject to use a particular strategy. This 
study presents a three-pronged approach to infer an animal’s control objective from behavior. First, 
both humans and monkeys performed a virtual balancing task for which different control strategies 
could be utilized. Under matched experimental conditions, corresponding behaviors were observed 
in humans and monkeys. Second, a generative model was developed that represented two main 
control objectives to achieve the task goal. Model simulations were used to identify aspects of 
behavior that could distinguish which control objective was being used. Third, these behavioral 
signatures allowed us to infer the control objective used by human subjects who had been instructed 
to use one control objective or the other. Based on this validation, we could then infer objectives 
from animal subjects. Being able to positively identify a subject’s control objective from observed 
behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of 
sensorimotor coordination.

eLife assessment
This study represents a step towards integrating human and non-human primate research towards a 
broader understanding of the neural control of motor strategies. It could offer valuable insights into 
how humans and non-human primates (Rhesus monkeys) manage visuomotor tasks, such as stabi-
lizing an unstable virtual system, potentially leading to discoveries in neural behaviour mechanisms. 
While the evidence is mostly solid, some results, particularly from the binary classification of control 
strategies for non instructed behaviour, require further validation before it could be conclusively 
interpreted.

Introduction
Almost all actions in daily life can be achieved in multiple ways that all can lead to the desired task 
goal. As an example, consider a driver steering a car on a curvy road to reach a target destination. She 
may choose different paths depending on whether she wants to maintain a consistent distance from 
the median strip or whether she aims to minimize changes in velocity. Both strategies can achieve her 
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goal, i.e., arrive at her destination, maybe even arriving at the same time, although the precise path 
taken by the car in both situations will differ. How could one identify the underlying control objective 
from differences in observed behavior? In more technical terms, what is the objective/cost function 
that an individual aims to achieve/minimize to accomplish a task? A considerable number of studies 
in human movement neuroscience have aimed to identify the control objectives in a given task based 
on their kinematic manifestations (Braun et al., 2009; Izawa et al., 2008; Nagengast et al., 2009; 
Razavian et al., 2023; Uno et al., 1989; Wong et al., 2021). However, experimental tasks are often 
chosen to elicit consistent behavioral features across repetitions and individuals, not only to facilitate 
analysis, but also to constrain control to a single objective. Behavior in natural settings, however, tends 
to be more complex and highly variable across repetitions, because there is redundancy, meaning that 
a variety of ways exist to achieve the goal. Hence, individuals can employ a multitude of strategies to 
accomplish a task. To date, the understanding of such variable behaviors with underlying redundancy - 
let alone its neural bases - has posed formidable challenges (Croxson et al., 2009; Diedrichsen et al., 
2010; Kawato, 1999; Scott, 2004).

Attempts to understand the neural underpinnings of control objectives have been pursued in 
research on both humans and non-human primates (Benyamini and Zacksenhouse, 2015; Cross 
et al., 2023; Croxson et al., 2009; Desrochers et al., 2015; Kao et al., 2021; Miall et al., 2007; 
Nashed et  al., 2014; Omrani et  al., 2016). Yet, with notable exceptions (e.g. Pruszynski et  al., 
2011), these two lines of inquiry have remained largely parallel with few direct bridges: human behav-
ioral and computational research has mainly focused on the analysis of behavior, while animal research 
has used invasive methods such as intracortical recordings to understand the neural mechanisms of 
movement control. Experiments with humans tend to use detailed experimental manipulations to 
elicit features of motor behavior that afford insights into its governing principles. Using a wide range 
of tasks, from simple reaching to interacting with complex objects, mathematical models with specific 
control algorithms have been used to reproduce the salient features of behavior (Crevecoeur et al., 
2019; Diedrichsen, 2007; Nagengast et al., 2009; Nayeem et al., 2021; Razavian et al., 2023; 
Yeo et  al., 2016). However, understanding the neural underpinnings of movement control at the 
intracortical level in healthy humans has remained a challenge. On the other hand, animal research, 
in particular with non-human primates, allows sophisticated methods to directly record neural activity 
to afford insights into neural correlates of motor behavior. Ultimately, this knowledge should transfer 
to how the human brain functions (Badre et al., 2015), but those links have only been made few and 
far between.

To achieve this goal, cooperative study designs between human and animal motor research 
are needed to understand the neural basis of human motor skill (Badre et al., 2015; Rajalingham 
et al., 2022). However, there are difficult challenges to overcome: First, cooperative design requires 
matching behavioral tasks that can be performed similarly and with the same conditions by both 
humans and animals. While research on eye movement control has achieved such matching between 
human and non-human primate paradigms (e.g. the anti-saccade task or the Rashbass step ramp; 
Lisberger et al., 1987; Munoz and Everling, 2004; Rashbass, 1961; Robinson, 2022), this proves 
more challenging in limb coordination, where explicit goals and instruction become more important. 
Second, the constraints of behavioral studies with monkeys and humans are somewhat different, which 
can preclude a direct comparison. Behavioral tasks used with monkeys are typically simpler than those 
used with humans, due to the animals’ more limited cognitive capacities. Also, studies with monkeys 
aim for highly repeatable behaviors to facilitate the aggregation of neural activity across trials or days. 
This means that tasks with redundancy that allow multiple solutions to achieve the same goal do not 
readily lend themselves to investigation. In contrast, studies of human behavior can push toward tasks 
that are more sophisticated and capture the complexity and redundancy that abound in natural activ-
ities. Our experiments examine a behavioral task with redundancy that allows more than one solution 
to accomplish the task. Despite these challenges, our study aims to bridge the gap between human 
and monkey behavioral studies to build toward an understanding of the neural principles of human 
motor control.

We used an experimental paradigm, the Critical Stability Task (CST), that can be performed by both 
humans and monkeys (Quick et al., 2018). The CST requires the subject to balance an unstable virtual 
system governed by a very simple dynamical equation (see Methods). Performing the task is akin to 
balancing a virtual pole. The CST has features that make it suitable for the study of more complex 
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motor behaviors. First, while the goal remains the same, the difficulty of the task can be titrated. 
Second, it involves interactions with an object, albeit virtual in our case, so that continuous adjust-
ments are required to succeed. Each trial evokes unique behavior that may reflect different control 
strategies to accomplish the task. In addition, even if the same control strategy is employed, each trial 
generates different behavior due to sensorimotor noise and the task’s instability. These features are 
ubiquitous in all everyday actions and our choice of CST was to explicitly address such behavior that 
is closer to naturalistic behaviors. As in the car driving analogy, the subjects might seek to optimize 
position, or they might seek to optimize velocity, while both strategies may lead to equal success.

Because of its complexity and redundancy, each trial of the CST is unique. The goal of the study is 
to infer the subject’s control objective (i.e. minimization of errors in position or velocity) from obser-
vations of their behavior. When the subjects are humans, it is possible to instruct them to employ a 
particular strategy or to ask them post-hoc what strategy they adopted to succeed at the task. This 
explicit route is definitely not available with monkeys. As we are still quite far from ‘reading out’ 
strategies from neural activity, we need to start with behavior to infer the control objectives. Hence, 
this study adopted a computational approach based on optimal control theory to simulate behavior 
during the CST in various conditions. This approach allowed us to make predictions about the behav-
ioral signatures associated with different control policies, which we then used to analyze the experi-
mental data from both humans and monkeys.

In overview, this study investigated, through behavioral data and model-based simulations, the 
sensorimotor origins of observed kinematic strategies in humans and non-human primates performing 
the CST. We developed the experimental paradigm such that humans and monkeys executed the task 

Figure 1. Experimental setup for monkeys and humans performing the CST. Monkeys (A) and humans (B) controlled an unstable cursor displayed on 
a screen using lateral movements of their right hand. The hand movements were recorded using motion capture; the data were used in real-time to 
solve for the cursor position and velocity through the CST dynamics equation. Timeseries of the hand (red) and cursor (blue) movements shown for four 
example trials from monkeys (C) and humans (D).

https://doi.org/10.7554/eLife.88514
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under matching conditions while recording movement kinematics in exactly the same way. An optimal 
control model was used to simulate two different control objectives, through which we identified these 
different objectives in the experimental data of humans and monkeys. We discuss how in the future 
these results could guide the analysis of neural data collected from monkeys to understand the neural 
underpinnings of different control policies in an interactive feedback-driven task with redundancy.

Results
The CST involved balancing an unstable system using horizontal movements of the hand to keep a 
cursor from moving off the screen (Figure 1A and B). This study collected data from human subjects 
performing the CST and compared it to previously collected data from monkeys performing the same 
task. The hand’s displacements were recorded by 3D motion capture (Qualisys, Gothenburg), with a 
reflective marker attached to the hand. The cursor dynamics were generated by a linear first-order 
dynamical system, relating hand and cursor kinematics as described in Quick et al., 2018:

	﻿‍ ẋ = λ
(
x + p

)
‍� (1)

where ‍x‍ and ‍̇x‍ are the horizontal cursor position and cursor velocity on the screen, ‍p‍ is the horizontal 
hand position, and ‍λ‍ is a positive constant fixed at the beginning of each trial. The parameter ‍λ‍ sets 
the gain of the system. When ‍λ‍ is larger, the cursor would tend to move faster, making the task more 
difficult as faster and more precise hand movements were required to maintain balance. Correspond-
ingly, success rates at the task decreased with increasing ‍λ‍. To summarize the skill of human and 
monkey participants, we identified the value at which subjects succeeded at only 50% of the trials and 
defined that value as the ‘critical’ value, ‍λc‍.

The task goal was to keep the cursor within a range of space shown on the screen for a duration 
of 6 s. The range of the workspace was defined as ‍−c ≤ x

(
t
)
≤ c‍, where ‍c‍ was a positive constant 

(c=5 cm or 10 cm; see Methods). This created a redundancy in achieving the task goal as there were 
infinitely many ways in which one could balance the cursor inside the specified region. We exam-
ined movement kinematics to identify control strategies employed by different subjects, and across 
different trials.

In a previous study, two Rhesus monkeys were trained to perform the CST under increasing diffi-
culty levels (Quick et al., 2018). Similarly, here 18 human subjects were recruited to perform the same 
task under comparable experimental conditions as the monkeys (see Methods). Figure 1 illustrates 
the experimental setup for both monkeys and humans (Figure 1A and B) and shows examples of their 
behavior (Figure 1C and D). Overall, there were similarities in performance between humans and 
monkeys. To further quantify and compare this performance across humans and monkeys, we defined 
a set of control metrics to assess different aspects of control as detailed in the following.

Experiment 1: CST performance without instructed strategy
In the first experiment, six human subjects performed the CST with the only instruction to ‘perform the 
task without failing to the best of your ability’. Failure occurred if the cursor escaped the boundaries 
of the screen (±10 cm from the center) within the trial duration of 6 s. Subjects received categorical 
feedback about the outcome at the end of each trial in a text appearing on the screen reading ‘Well 
done!’ for success, and ‘Failed!’ for failure. The degree of difficulty, set by ‍λ‍, was increased stepwise 
across trials until the subject could no longer perform the task (see Methods for the specifics about 
the setting of ‍λ‍ values).

We first sought to examine the main characteristics of behavior in CST performance and how it 
compared between humans and monkeys. To quantify the overall behavior, four main metrics were 
employed as described and motivated below. To begin, we considered the overall success rate in the 
task among different individuals, before focusing on the kinematics of task performance. Figure 2A 
illustrates the success rates and how they dropped as the task difficulty increased. Both humans 
and monkeys showed a similar pattern of decrease in success rate which was well-captured with a 
sigmoidal function. Expectedly, individuals varied in their ability to achieve high difficulty levels as a 
measure of skillful performance, indicated by their ‘critical ‍λ‍ value’ ‍λc‍, that is, the value of ‍λ‍ when the 
success rate dropped below 50%.

https://doi.org/10.7554/eLife.88514
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To investigate the performance in more detail, the kinematics of movement were examined, specif-
ically the hand and cursor position during each trial. As indicated in Equation 1, the hand position 

‍p‍ was the control input to the system which aimed to control the cursor position ‍x‍ as the variable of 
interest. Due to the unstable nature of the task, drifting of the cursor towards the edge of the screen 
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Figure 2. Overall behavioral characteristics of CST performance as a function of task difficulty (‍λ‍). Data is shown for two individual monkeys (first two 
columns from left) from a previous study (Quick et al., 2018), as well as an example human individual (third column from left) and the average across 
human subjects (right-most column; n=6). For the individual subjects, each data point and its corresponding error bars represent the mean ± SD across 
trials for any given difficulty level, respectively. For the human average plot, the data points and their corresponding error bars represent the mean ± SE 
across individuals for each difficulty level. (A) Psychometric curves for success rate (%) as a function of task difficulty (‍λ‍). The difficulty level at which the 
success rate crossed 50% was considered as the critical stability point (‍λc‍), indicating the individual’s skill level in task. (B) Correlation between the hand 
and cursor position trajectories during CST. (C) Sensorimotor lag between the cursor and the hand movements. (D) Ratio of hand RMS over the cursor 
RMS calculated for each trial, representing the strength of the hand response relative to the cursor displacement.
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demanded a response by the hand movement to avoid failure. As such, two simple metrics charac-
terized control, one quantifying how the movement of hand and cursor correlated, and a second one 
to what degree the hand response lagged cursor displacements. Figure 2B shows the correlation 
between the cursor and hand movements as a function of task difficulty. The strength of the correla-
tion increased as trials became more challenging in both monkeys and humans, asymptoting towards 
–1. According to Equation 1, this behavior was equivalent to reducing the sum ‍

(
p + x

)
‍ to mitigate the 

effect of large ‍λ‍ values on cursor velocity ‍̇x‍ , and, hence, reduce the chance of failure.
The response lag from the cursor movement (observed feedback) to the hand movement (control 

response) is an important characteristic of a control system. As shown in Figure 2C, by increasing the 
task difficulty ‍λ‍, the lag decreased for all subjects. Coupled with the increase in the strength of the 
correlation with increasing ‍λ‍, these findings indicate that subjects generated faster and more precise 
corrective responses to cursor displacements in more difficult trials.

As the fourth metric, we calculated the ratio of root mean squared (RMS) of hand position to the 
RMS of cursor position for each trial, as a measure of response strength. This measure determined to 
what extent the control signal (hand movement) compared in magnitude to the cursor movement. A 
large RMS ratio meant that on average across a trial, the hand exhibited larger movements than neces-
sary to correct for cursor deviations. Figure 2D illustrates the calculated RMS ratio as a function of task 
difficulty for humans and monkeys. Except for Monkey J, the RMS ratio showed a gradual decrease as 
the task difficulty increased for most individuals. The seemingly divergent behavior of Monkey J was 
likely due to subject-to-subject variability, as also observed in human performers (Appendix 1—figure 
1). Such decrease could be justifiable due to larger cursor movements at higher difficulty levels, and 
perhaps more efficient corrective hand responses to cursor displacements. It is worth noting that 
for high ‍λ‍ values, small hand movements could cause large cursor displacements, which were detri-
mental to the task success. Therefore, pruning any task-irrelevant hand movements, consistent with 
promoting efficiency, seemed essential to succeed in more difficult trials.

Overall, the control metrics presented in Figure 2 give insight into how the CST was performed: 
as the task difficulty increased, subjects tended to respond to cursor displacements faster (that is, 
with lower lag), more precisely (seen in the stronger hand-cursor correlation), and more efficiently 
(with lower RMS ratio). Behavior was comparable between humans and monkeys, which suggests that 
there were similar control strategies used by both species. Next, we sought to detect those control 
strategies.

Redundancy of control strategies in CST performance
The CST, as described earlier, affords redundancy in the behavioral strategies that could result in task 
success. Although covert in aggregate level of performance (i.e. Figure 2), single trial observations of 
hand and cursor trajectories suggested that different underlying control objectives might be at play. 
Two types of behavioral patterns appeared recognizable in the data. In one case, the cursor seemed 
to be always balanced around the center of the screen, and any deviations from the center induced 
a response to bring the cursor back to the center. This was reflected in the oscillatory movements of 
the cursor around the center, shown in example trials in Figure 1C and D (first row). In other trials, 
the cursor either exhibited a slow drift from the center or remained relatively still anywhere within 
the boundaries of the screen, with only limited attempts to bring the cursor back to the center (for 
example, Figure 1C and D, second row). We hypothesized that these patterns of behavior arise from 
different control objectives, each focused on a different state variable in the state-space of the cursor 
movement. In the former case, the position of the cursor appeared to be the primary control variable. 
Under this strategy, subjects might pursue the objective of keeping the cursor near the center of the 
screen. We refer to this strategy as Position Control. In the latter case, the cursor velocity seemed to 
be of primary importance for control, with the objective to slow down cursor velocity regardless of its 
position in the workspace. We refer to this strategy as Velocity Control.

Can we distinguish between different control strategies by examining behavior? To test this idea, 
we took a computational approach by developing a generative model based on optimal feedback 
control (Todorov and Jordan, 2002) that could simulate the task under different conditions and with 
different objectives (Todorov and Jordan, 2002). The model involved a controller that generated 
optimal motor commands based on a given objective to perform the CST via a simple effector model. 
The model also contained a state estimation block that estimated the states of the system based on 

https://doi.org/10.7554/eLife.88514
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the given feedback (Todorov, 2005). In this case, cursor position and cursor velocity were used as 
feedback to the controller at each time step. Figure 3A illustrates a block diagram of this model.

The control gains used in the controller to generate the motor commands were optimally found 
by minimizing the sum of two cost functions: the cost of effort to reduce energy, as well as the cost of 
accuracy that prevented the states of the system from making large deviations (2):

	﻿‍
J =

n∑
t=1

(
xT

t Qxt + uT
t Uut

)

‍�
(2)

where ‍u‍ and ‍x‍ represented the motor command and the state vector of the system, respectively. In 
this model, the state vector consisted of six states: the position, velocity and acceleration of the hand, 
as well as the position, velocity and acceleration of the cursor (see Methods). Variables ‍t‍ and ‍n‍ repre-
sent the time, and the total number of time steps in a trial, respectively. The matrix ‍Q‍ and the scalar 
‍U ‍ determined the weight of accuracy and effort in the cost function, respectively. Importantly, the 
matrix ‍Q‍ allowed for determining which states of the system were of primary importance in the control 
process. Therefore, the implementation of different control objectives in the controller was done 
through setting the ‍Q‍ matrix appropriately. As such, a Position Control strategy was implemented 
by setting the weight of cursor position in the ‍Q‍ matrix to a large value, emphasizing the primacy of 
cursor position as a control variable. Similarly, to implement the Velocity Control strategy, the weight 
of the cursor velocity in the ‍Q‍ matrix was set to a large value (see Methods). By simulating the task for 
each control strategy, we could generate synthetic behavior similar to that of humans and monkeys. 
Figure 3B and C illustrate a few example simulations of the task under different difficulty levels for 
the Position Control and Velocity Control, respectively. As exemplified, the simulated trials for Position 
Control show oscillatory movements of the cursor around the center, whereas the trials generated 
based on Velocity Control, exhibited slow drift of the cursor from the center with minimal attempt to 
correct for such drift. These characteristics were similar to the observed patterns of behavior in human 
and monkey data (Figure 1C and D).

To further identify the behavioral signatures associated with each control objective, beyond the 
apparent differences between single trials, we conducted a series of simulations in which the model 
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performance was examined for a range of task difficulties. Novel predictions of the model for each 
control objective were assessed. For each objective, the task was simulated for different difficulty 
levels, ranging from ‍λ = 1.5‍ to ‍λ = 7‍, with increments of ‍∆λ = 0.2‍. For each difficulty level, 500 trials 
were simulated (see Methods for details). In the first step, we performed the same set of analyses 
as reported in Figure 2 to evaluate how the model compared to human and monkey behavior at an 
aggregate level of CST performance. Figure 4A illustrates the overall performance of the model for 
both Position Control and Velocity Control. As shown, for each metric, the model exhibited compa-
rable behavior to the experimental data with regard to the task difficulty: the success rate dropped 
in a sigmoidal fashion, the strength of the correlation between hand and cursor position increased, 
and the response lag between hand and cursor as well as the hand/cursor RMS ratio decreased. 
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Figure 4. Different control objectives result in measurably different behavior. Overall performance of the model 
(A) and human subjects (B) for two control objectives, Position Control and Velocity Control. The four rows show 
success rate (first row), correlation between hand and cursor position (second row), sensorimotor lag between 
cursor and hand position (third row), and the hand/cursor RMS ratio, defined as the RMS of hand movement over 
the RMS of cursor movement during each trial (last row). The error bars on the human average data indicate the 
standard error of the mean across subjects for each group (n=6 per group). (C) The average performance across 
difficulty levels and subjects within each group. The critical ‍λ‍ (first row) indicates the difficulty level at which the 
success rate crosses 50%. The p-values are produced using unpaired t-test.
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These results showed that, overall, both simulated control objectives produced similar behavioral 
characteristics as humans and monkeys. More interestingly, the model predicted that Position and 
Velocity Control performed comparably in success rate and hand-cursor correlation (Figure 4A, top 
two panels), but differed significantly in the response lag and the hand/cursor RMS ratio (Figure 4A, 
bottom two panels). Specifically, Position Control consistently showed larger values for lag and RMS 
ratio for most task difficulty levels.

Experiment 2: CST performance under explicit instructions
The model indicated that differences in behavioral metrics existed for Position vs Velocity Control. 
This led to a new experiment for which we recruited two new groups of human subjects (n=6 per 
group). Each group performed the CST under the same procedure as described in Experiment 1, 
except that this time each group was explicitly instructed to use a specific control objective. One 
group was asked to perform the task with ‘keeping the cursor at the center of the screen at all times’. 
This instruction intended to induce Position Control. The second group was asked to ‘keep the cursor 
still anywhere within the boundaries of the screen’. This instruction aimed to induce Velocity Control 
(see Methods for details). In each group, the kinematic behavior of hand and cursor was collected, 
and the control metrics were calculated. The goal was to elicit differences in performance between 
the two groups and, if such differences were found, to determine whether they matched the behavior 
of the corresponding model.

The summary of performance for both human subject groups is shown in Figure 4B. The general 
trends of all four measures with respect to the task difficulty were consistent with the data generated 
by the model, as well as the human data from Experiment 1 (Figure 2). Importantly, the behavioral 
differences between the two control strategies in human data matched the predictions of the model 
relatively well (Figure 4A and B): the rate of success was similar, and with the exception of hand-cursor 
correlation, the group with Position Control instruction showed a significantly larger hand-cursor lag 
(unpaired t-test: t10=3.79, p=0.004) and hand/cursor RMS ratio (unpaired t-test: t10=5.27, p<10–3) 
compared to the group with Velocity Control instructions (Figure 4C).
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These results showed that the model not only captured the overall performance features observed 
in the data, it also successfully demonstrated the redundancy of control strategies in CST perfor-
mance. Importantly, it could qualitatively distinguish between such strategies at an aggregate level of 
performance. To ask further, can we identify in a quantitative way the control objective employed by 
an individual? Can we do so even in a given trial, when no explicit information about their preferred 
objective was available? To this end, we examined performance at a single-trial level and introduced 
quantitative measures that evaluated the degree to which a particular control objective was used in 
that trial, as described in the next section.

Behavioral traces of control objectives in an individual’s overall 
performance
To further investigate what control objective was preferred by an individual or in a given trial, we exam-
ined the predictions of the model about the cursor behavior in state space, and then tested these 
predictions using experimental data from Experiment 2. Two metrics were defined that captured the 
state-space behavior of the cursor in each trial. First, we examined the average cursor position and 
cursor velocity in each trial, represented in the state space of cursor movement. This provided a single 
data point for each trial in state space, indicating whether on average there was a drift in cursor posi-
tion and its velocity away from zero (‍x = ẋ = 0‍). It was expected that for Position Control, all trials scat-
tered around the origin of the state space, whereas for Velocity Control, they could deviate from the 
origin. We also examined whether there was a correlation between the cursor mean position and its 
mean velocity. This, in essence, was equivalent to the autocorrelation of cursor position, i.e., correla-
tion between mean position and final position. Figure 5A illustrates the state-space representation 
of cursor movement based on model simulations for both Position Control (top) and Velocity Control 
(bottom), where each data point represents one simulated trial. As shown, the distribution of trials 
in this space differed markedly between the two control objectives (also see Appendix 1—figures 2 
and 3). Position Control resulted in a distribution with little correlation between cursor position and its 
velocity, and closely scattered around the center. In contrast, Velocity Control revealed an elongated 
distribution with a relatively strong correlation between the cursor position and its velocity.

We further examined whether such distinction in behavior was solely due to a change in the control 
objective, or whether varying other parameters in the model simulations, such as motor noise, delay, 
or effort cost, could also generate similar distinctive patterns. These sensitivity analyses showed that 
different magnitudes of noise and delay only affected the success rates, but no other features, as to 
be expected. Effort cost also could not account for the observed differences in the above mentioned 
movement distributions (Appendix 1—figures 4–6). Therefore, this robustness to variations in the 
model parameters allowed us to probe performance based on the underlying control objective.

To validate the model predictions, the same analyses of cursor position and velocity were performed 
on the empirical data from Experiment 2. Figure 5B illustrates three example subjects from the Position 
Control and Velocity Control groups, and Figure 5C shows a summary of how the correlation values 
differed across control objectives for the model and the empirical data. As shown, overall, subjects 
in the Velocity Control group showed significantly larger correlations than individuals in the Position 
Control group (unpaired t-test on the Pearson correlation coefficient: t10=4.06, p=0.002). Based on 
the within-group variability, this allowed us to determine how pronounced a subject executed their 
respective strategy compared to other subjects in the same group.

It should be noted that Figure 5B shows the data for an ensemble of trials ranging in difficulty 
levels from easy up to the critical ‍λc‍ values, corresponding to success rates ranging from 100% to 
50%. Additional analyses probed whether these behavioral features changed as a function of the 
difficulty levels. When grouping the trials into easy and moderate difficulty trials, the cursor position 
and velocity relations did not change and the correlations for the two control objectives continued to 
reveal the same relative difference between the control objectives (see Appendix 1—figures 7 and 
8).

The effects of control objective at a single-trial level of behavior
Due to the task’s redundancy, the control objective may not be fixed for an individual throughout their 
performance and might vary from one trial to the next. It is therefore of great interest to determine, 
in a given trial, to what extent the behavior is the outcome of Position or Velocity Control. To this end, 
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we examined the magnitude of cursor movement calculated as the root mean squared (RMS) of its 
position and velocity in each trial. This was directly related to the cost functions used in the model 
(Equation 2), which provided a more direct comparison regarding the primacy of Position versus 
Velocity Control of the cursor: Position Control aimed to minimize the RMS of cursor position, while 
Velocity Control aimed to minimize the RMS of cursor velocity. This distinction could be well repre-
sented in the state-space of the cursor movement.

Figure 6A illustrates the model prediction for the RMS of cursor position and cursor velocity plotted 
against each other for Position Control (top) and Velocity Control (bottom). For Position Control, the 
distribution of trials leans towards the vertical axis (restricting cursor position but allowing large cursor 
velocities), whereas for Velocity Control, it leans mainly towards the horizontal axis (a larger range 
of cursor positions but restricted velocities). This distinction could be quantified by the slope of a 
fitted regression line to the data, with relatively larger slopes indicating Position Control and smaller 
slopes signaling Velocity Control. Similar patterns of behavior could be observed in the human data 
from Experiment 2 as illustrated in Figure 6B and C, with the Position Control group showing signifi-
cantly larger regression slope than the Velocity Control group (unpaired t-test, t10=6.33, p<0.001). The 
regression slope could more clearly distinguish between individual trials than could the correlation 
coefficient metric shown in Figure 5, regarding their corresponding control objective: if a given trial 
in the RMS space of the cursor movement lay below/above a certain slope threshold, its performance 
could be considered the result of Velocity/Position Control. We could therefore use this behavioral 
feature to develop a classifier that inferred, with a certain level of confidence, the underlying control 
objective in the performance of an individual in any given trial.

Inferring control objectives from behavior during CST performance
When monkeys performed the CST, we lacked explicit knowledge about which strategy they might 
have employed. This resembles Experiment 1 when humans performed the CST with no specific 
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instructions and their control objective was not explicitly available. To achieve the goal of inferring an 
individual’s control objective based on their performance, we used the control characteristics that our 
computational approach introduced to distinguish between different control objectives. To this end, 
the simulation results based on the cursor movement in its RMS space (Figure 6A) were used to train 
a simple classifier, a support vector machine (see Methods). This classifier then determined, based on 
the learned regression slopes from the RMS distributions (Figure 7A), whether a given trial was likely 
performed as Position Control, or Velocity Control.

We first evaluated the accuracy of the classifier based on simulated data, where the classifier was 
trained on synthetic data generated with Position and Velocity Control (2250 trials each), and then 
tested on a separate set of trials from either control objective (2500 trials). For any given trial, the 
classifier obtained a posterior probability indicating to what extent that trial was generated under 
Position Control. The probability of 95% and higher identified the given trial as Position Control, while 
the probability less than 5% labeled the trial as Velocity Control; anything in between was considered 
‘Uncertain’ as to the underlying control objective. We also measured how often the classifier misclas-
sified a Position Control trial as Velocity Control, and vice versa. The results showed that 6.2% of trials 
that were generated with Position Control were misclassified as Velocity Control, and 5.5% of trials 
that were generated with Velocity Control were misclassified as Position Control. This provided a 
reasonable accuracy for the classifier applied to the experimental data.

Next, we tested the performance of the classifier on the empirical data from Experiment 2, where 
the intended control objective used by each subject was known. We asked how well the classifier 
could recover the control objective used by each subject. Figure 7B shows the cursor RMS data from 
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three example subjects in each instructed group (similar to Figure 6). For each trial (data point) the 
probability of Position Control was estimated by the classifier, and the trial was identified as Position or 
Velocity Control based on the estimated probability (>95% for Position, and <5% for Velocity Control). 
As shown in Figure 7B, for the Position Control group, most of the trials were rightfully classified as 
Position Control, and similarly for the Velocity Control group, the majority of trials were classified as 
Velocity Control. The average probability across all trials for each individual was also obtained as an 
overall measure of the control objective for that subject. This average measure is shown in Figure 7B 
for the example subjects and summarized in Figure 7C for all subjects in each group. This showed 
that the classifier correctly determined the control strategy of each individual without being trained 
on any experimental data.

The ultimate test of our approach would be to infer the control strategy used by individuals whose 
control objective was unknown, that is the monkeys and the humans who received no instructions 
about the control strategy in Experiment 1. After representing the performance of each subject in the 
RMS space, the classifier was used to determine what control objective was used in each trial. Figure 8 
illustrates the classification results for human subjects of Experiment 1 as well as two monkeys (Monkey 
I and J from Quick et al., 2018). The model simulations are also provided as reference in Figure 8A. 
Figure 8B and C show the data from three example human subjects, as well as two monkeys, in which 
each trial is either labeled as Position Control (brown), Velocity Control (cyan), or Uncertain (grey). 
Two example trials, one from each inferred control strategy are also singled out from each subject’s 
performance in Figure 8B and C (bottom row) to show how the hand and cursor movement behaved 
under each control objective. Calculating the average probability of control objective for each indi-
vidual, similar to Figure 7, we could infer which control objective was of primary importance for each 
subject (Figure 8D). For example, human subject NI-S2 more likely adopted Velocity Control, while 
human subject NI-S4 mainly performed the task with Position Control (Figure 8B). Similarly, Monkey I 
seemed to prefer Velocity Control, while Monkey J most likely adopted Position Control (Figure 8C).
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Ultimately, our procedure enabled us to not only infer the underlying control objective at a single 
trial level, but also identify which objective was overall preferred by humans and monkeys when no 
explicit knowledge about their strategy was available. These results are encouraging as they consti-
tute an important step towards bridging our findings between human and monkey research, and 
ultimately guide neurophysiological analyses to identify the neural underpinnings of control objectives 
in the primates’ brain.

Discussion
As we seek to understand the neural basis of human motor control, it is important to build links 
between studies in humans, where behavior can be complex and naturalistic, and monkeys, where 
direct neural recordings are possible (Badre et  al., 2015). Doing so requires close coordination 
between researchers who work with humans and animals, because this work is typically done in sepa-
rate labs with a few notable exceptions (Kurtzer et al., 2008; Pruszynski et al., 2011). With the 
goal to advance insights into movement control, the current work explicitly paralleled human-monkey 
behavior in a novel paradigm for monkey research. In a matching task design, humans and monkeys 
performed a virtual balancing task, where they controlled an unstable system using lateral move-
ments of their right hand to keep a cursor on the screen. The task was challenging and, importantly, 
exhibited different ways to achieve task success. The task required skill that was nevertheless simple 
enough for monkeys to learn and ultimately achieve the same level of proficiency as humans.

The results showed that both humans and monkeys exhibited the same behavioral characteristics 
as the task was made progressively more difficult: success rates dropped in a sigmoidal fashion, the 
correlation magnitude between hand and cursor position increased, and the response lag from cursor 
movement to hand response decreased. Further observations based on single trials showed that the 
task was possibly achieved with different control objectives, both across subjects and across trials. 
Our goal was to identify the underlying control objectives that led to different behavior; a model 
based on optimal feedback control was developed that identified two different control objectives that 
successfully captured the average performance features of humans and monkeys: Position Control and 
Velocity Control. Both strategies produced behavior that was consistent with observations even at the 
single trial level. Additional experiments revealed that humans who followed specific instructions as to 
performing the task with Position Control (‘keep the cursor at the center’) or Velocity Control (‘keep 
the cursor still’) matched the behavior predicted by the two simulated control objectives. Model simu-
lations exhibited features that served to identify these two control objectives in humans and monkeys 
who received no specific instructions at a single trial level.

Studies in motor neurophysiology have largely relied on simple paradigms such as center-out 
movements (Batista et al., 1999; Cisek et al., 2003; Georgopoulos et al., 1986; Pruszynski et al., 
2011; Scott and Kalaska, 1997), which were brief in duration, highly stereotypical across repetitions, 
and could be performed to a reasonable degree of success with limited sensory feedback. Such char-
acteristics were needed to make sense of noisy neural data through averaging trials over many repeats 
of highly similar behaviors. However, such constrained behaviors are not common in natural settings, 
where we continually utilize sensory feedback to respond to our environment, interact with objects 
around us, and never do the same action the exact same way. Indeed, such fluid, prolonged and 
feedback-driven interactions are what we seek to understand both at the behavioral and neural levels. 
To this end, we need to investigate more complex tasks that involve sensory-driven control and allow 
for different control strategies while still within a sufficiently controlled scope. The task employed 
here, the CST, continuously engages feedback-driven control mechanisms for a prolonged period of 
time and is rich in its trial-to-trial and subject-to-subject variability. As we can titrate the difficulty of the 
task, both monkeys and humans can learn it and we can study and model their behavior. This opens 
the gate towards understanding the neural principles of skill learning beyond simple reaching tasks. 
This study showed that CST afforded the examination of control strategies through a computational 
approach that modeled monkey and human behavior in comparable fashion.

Looking across monkey and human behavior is not new per se. In the eye movement literature, 
comparisons between features in monkeys and humans have been more common (e.g. Dorris et al., 
2000; Groh and Sparks, 1996). In fact, experimental findings in primates have been instrumental to 
understanding impairments in eye movement control in humans. And yet, due to practical consider-
ations, experiments in non-human primates take considerably longer than human behavioral studies; 
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due to the logistic problems of having research facilities for both monkeys and humans, combined 
studies in a single lab have largely remained elusive. Direct comparative studies conducted in different 
laboratories with exact matches between experimental conditions are harder to achieve.

Another possible avenue for bridging insights between human and monkey behavior is through 
a computational approach applied to both human and monkey performance (Badre et  al., 2015; 
Rajalingham et al., 2022). In an earlier attempt of modeling CST, a simple PD controller with delay 
in sensory feedback was proposed to explain the recorded behavior (Quick et al., 2018). However, 
the model was limited in its ability to capture most features observed in the data, such as success 
rate or correlation between hand and cursor position. In the past years, optimal feedback control 
(OFC) has been introduced as an effective approach to understanding the control mechanisms of 
reaching movements at the level of behavior (Diedrichsen et al., 2010; McNamee and Wolpert, 
2019; Pruszynski and Scott, 2012; Scott, 2004; Todorov, 2004), separately in human research (Liu 
and Todorov, 2007; Nagengast et al., 2010; Nashed et al., 2014; Razavian et al., 2023; Ronsse 
et al., 2010; Todorov, 2005; Todorov and Jordan, 2002; Yeo et al., 2016) and monkey research 
(Benyamini and Zacksenhouse, 2015; Cross et al., 2023; Kalidindi et al., 2021; Kao et al., 2021; 
Takei et al., 2021). Here, the OFC framework was used to account for and make novel predictions 
about behavioral features in CST.

Note that there are fundamental differences between reaching and CST movements, which 
needed to be accounted for in the modeling process. Unlike center-out reaching, the CST did not 
have a stationary target toward which the hand needed to move; rather, it required the hand/cursor 
to remain anywhere within a predefined area for a prolonged period of time. Also, the behavior was 
not tracking a point on the screen, but rather moving in opposite direction of the cursor, a behavior 
that probably requires more cognitive resources. Despite these advanced task features, OFC as a 
feedback control framework proved an appropriate approach to examine this demanding interactive 
and sensory-driven task.

A few aspects in our computational approach are worth discussing. First, we examined control 
objectives that only involved two main kinematic quantities of movement: cursor position and cursor 
velocity. One might argue that other kinematic features could be explored, such as acceleration or 
other higher derivatives of the cursor and/or the hand. However, it is important to note that, given the 
task of keeping the cursor within a specified area for a period of time, cursor position and velocity are 
the most directly related quantities to the goal of the task. These quantities were also less demanding 
to predict from sensory feedback, compared to, for example, acceleration (Hwang et al., 2006; Sing 
et al., 2009). Also note that the kinematics of the hand were not the variables of interest in the task, 
as the goal was to control the cursor, and not the hand.

Second, there may indeed exist simpler control models that can exhibit similar distinctions in behav-
iors simply by finding the right control gains for each behavioral pattern. In essence, our modeling 
approach also generates such patterns using control gains at the extremes of the spectrum of Posi-
tion and Velocity Control. However, in contrast to models with a simple gain modulation, our model 
provides a normative account of what control gains are needed to account for the observed data, 
and what objectives underlie the choice of such gains (see Appendix 1—figure 9, for the optimal 
gain modulation across control objectives and difficulty levels). In this case, the two control objectives 
not only demonstrated the ability to generate the distinct behavioral traces of our data, but also 
accounted for the main performance features such as success rate, lag, RMS ratio, and correlations 
across a wide range of difficulty levels. And yet, we do not claim that our approach provides a ‘ground 
truth’. Rather, it presents a reasonable account of behavior with an intuitive explanation about human 
and monkey performance in our virtual balancing task.

Third, we mainly explored Position and Velocity Control separately to identify distinctive behavioral 
features associated with each one. Experimental data, however, shows that a large number of trials fall 
somewhere between the Position and Velocity Control boundaries (Figures 7 and 8). This could be 
due to a mixed control strategy, where both Position and Velocity Control contribute simultaneously 
to achieving the task goal, or where subjects switch strategies of their own accord. Here, we aimed 
to determine the behavioral signatures of the extreme cases, either predominantly based on position, 
or velocity of the cursor movement. This may increase the chance to detect differences more clearly 
in neural activity associated with each control objective in further analysis of monkeys’ neurophysio-
logical data.

https://doi.org/10.7554/eLife.88514


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Sadeghi, Sharif Razavian et al. eLife 2023;12:RP88514. DOI: https://​doi.​org/​10.​7554/​eLife.​88514 � 16 of 31

Even though in this experiment only a subset of trials was amenable to a clear identification as one 
control strategy, it is possible with monkeys to collect tens of thousands of trials over many days accu-
mulating enough trials for analysis. Furthermore, employing more sophisticated experimental manipu-
lations in future studies, such as introducing perturbations during task performance, could potentially 
enhance the distinction between control objectives and elucidate their underlying neural mechanisms. 
This was briefly tested in a series of additional simulations in our study, whereby introducing a simple 
random offset in the initial cursor position more clearly distinguished between different control objec-
tives (Appendix 1—figure 10). Experimental evaluation of these model predictions is left for future 
studies.

Having identified control objectives in behavior, the next intriguing question is what neural activity 
could underlie these different behavioral signatures. As our task is quite novel to the field, it is difficult 
to formulate exact predictions. However, one first step amenable to analysis is how neural activity 
differs when preparing for the trial. Previous work has shown that the motor cortex is highly active 
prior to an action and neural dynamics become specific to the task as monkeys prepare for a cued 
movement (Ames et al., 2014; Cisek and Kalaska, 2005; Dekleva et al., 2018; Elsayed et al., 2016; 
Kaufman et al., 2014; Lara et al., 2018; Perich et al., 2018; Vyas et al., 2018; Zimnik and Church-
land, 2021). It seems possible that the control objectives we observed elicit different preparatory 
activity in the motor cortex.

To conclude, despite potential limitations, our approach was successful in two main ways. First, it 
provided a normative explanation for the macro-level characteristics of behavior observed in human 
and monkey data. Second, due to its generative nature, model simulations also provide for not yet 
seen conditions and can make predictions about the behavior under new control objectives. Hence, 
our behavioral analysis holds promise to generate crucial insights into neural principles of skillful 
manipulation, not only in monkeys but also, by induction, in humans.

Methods
Participants and ethics statement
18 healthy, right-handed university students (age: 18 to –25 years; 8 females) with no self-reported 
neuromuscular pathology volunteered to take part in the experiments. All participants were naïve 
to the purpose of the experiment and provided informed written consent prior to participation. The 
experimental paradigm and procedure were approved by the Northeastern University Institutional 
Review Board (IRB# 22-02-15).

The data from two adult male Rhesus monkeys (Macaca mulatta, wild type, supplied by Alpha 
Genesis, Ages: 7 and 8 years old) used in this study was taken from a previously published work (Quick 
et al., 2018). All animal procedures were approved by the University of Pittsburgh Institutional Animal 
Care and Use Committee, in accordance with the guidelines of the US Department of Agriculture, the 
International Association for the Assessment and Accreditation of Laboratory Animal Care, and the 
National Institutes of Health. For details of experimental rig and procedure see the Methods in Quick 
et al., 2018.

Critical stability task (CST)
The CST involved balancing an unstable cursor displayed on the screen using the movement of the 
hand (Jex et al., 1966; Quick et al., 2014; Quick et al., 2018). The CST dynamics was governed by 
a first-order differential equation as shown in Equation 1. The difficulty of the task was manipulated 
by changing the parameter ‍λ‍: by increasing ‍λ‍ the task became more unstable, hence more difficult to 
accomplish. To perform the task, subjects sat on a sturdy chair behind a small table, with their right 
hand free to move above the table (Figure 1). A reflective marker was attached to the subject’s back 
of the hand on the third metacarpal bone. The hand position was recorded using a 12-camera motion 
capture system at a sampling rate of 250 Hz (Qualisys, 5+, Goetheburg, SE). The mediolateral compo-
nent of the hand position was used to solve the CST dynamics with the initial condition of ‍x

(
t = 0

)
= 0‍ 

(Quick et al., 2018). The calculated cursor position was real-time projected as a small blue disk (diam-
eter: 4 mm, approximately 0.8° in visual angle) on a large vertical screen in front of the subject at a 
150 cm distance. The processing delay of the visual rendering was roughly 50 ms.

https://doi.org/10.7554/eLife.88514
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Experimental design
Task
At the beginning of the experiment, human subjects held their right hand comfortably above the table 
and in front of their right shoulder as shown in Figure 1, where the hand position was mapped to the 
center of the screen. The visual display of the cursor and hand position was scaled such that the lateral 
hand movements of ±10 cm corresponded to ±20° of visual angle from the screen center and served 
as the boundaries of the workspace. Each trial started with the hand position displayed on the screen 
as a red cursor (diameter: 4 mm, or approximately 0.8° in visual angle). Subjects were asked to bring 
the red cursor to the center of the screen depicted by a small grey box (Figure 1). Once the red cursor 
was at the center, and after a delay of 500 ms, the trial started. The red cursor disappeared and a blue 
cursor representing the ‍x‍ position in Equation 1 appeared at the center. Subjects were instructed 
to keep (or ‘balance’) the blue cursor within the boundaries of the workspace for 6 s for the trial to 
be considered successful. If the cursor escaped the workspace at any time, the trial would abort and 
considered as failed. Subjects were informed of the outcome of the trial by a message on the screen, 
reading ‘Well Done!’ for success, and ‘Failed!’ for failure. This feedback matched the binary reward 
that monkeys were given in the experiment by Quick and colleagues. The next trial started after an 
intertrial interval of 1000 ms.

Experimental paradigm and conditions
Each human subject participated in the experiment for three consecutive days. At the beginning 
of the first day, subjects were familiarized with the experimental setup and the objectives of the 
task. Familiarization consisted of five CST trials with moderate difficulty level. These trials were later 
excluded from the analyses. The main experiment consisted of three main phases that were repeated 
on each day. The first and second phases of the experiment involved 15 reaction time trials and 
10 tracking trials, respectively (data for reaction time and tracking trials were not reported in this 
study). Phase three involved the CST trials, which were performed in three blocks. In Block 1, subjects 
performed 30 CST trials, where the difficulty level was determined in each trial using an up-down 
method: starting from ‍λ = 2.5‍ in the first trial, if subjects succeeded/failed on the current trial, ‍λ‍ 
was increased/decreased by ‍∆λ = 0.2‍ in the next trial. By the end of Block 1, subjects had gradually 
converged to ‍λ‍ values in which the success rate was approximately 50%. This value was considered as 
the critical instability value (Quick et al., 2018), denoted by ‍λc‍ , and was obtained by averaging the 
‍λ‍’s of the last five trials of Block 1.

In Block 2, a stepwise increase in ‍λ‍ was adopted: subjects started with a difficulty level of ‍λ = 70%λc‍ 
(using ‍λc‍ from the previous block). They continued until they completed 10 successful trials, or 20 
trials in total (whichever occurred first). The difficulty level was then increased by ‍∆λ = 0.2‍, and the 
procedure repeated. This incremental increase of ‍λ‍ continued until the subjects’ success rate for the 
ongoing ‍λ‍ dropped below 10% (i.e., less than 2 successful trials out of 20). This marked the end of the 
second block. In total, subjects performed approximately 120–200 trials in Block 2, depending on the 
individual’s performance.

In Block 3, subjects performed the CST under three selected difficulty levels of easy, medium, 
and hard, with 20 trials for each difficulty level. These levels corresponded to ‍λ‍ values that led to 
75% success rate (easy), 50% success rate (medium) and 25% success rate (hard) obtained from each 
individual’s performance in Block 2. The exact values of ‍λ75%‍ , ‍λ50%‍ , and ‍λ25%‍ were calculated by 
fitting a psychometric curve to the success rate data from Block 2 as a function of ‍λ‍ (see Figure 2). 
The order of difficulty was pseudo-randomly selected for each subject. For this study, we only 
analyzed the CST data from Block 2 (stepwise increase in ‍λ‍) as it matched the procedure used in 
the monkey experiment (Quick et al., 2018). Subjects repeated the same experimental procedure 
on Day 2 and 3.

Three groups of human subjects participated in the experiment, where each group received 
different instructions about the task goal. The first group was instructed to perform the CST ‘without 
failing to the best of their ability’ (no-instruction group); the second group was instructed to ‘keep 
the cursor at the center of the screen at all times’ (Position Control group); and the third group 
was instructed to ‘keep the cursor still anywhere within the bounds of the screen’ (velocity control 
group).

https://doi.org/10.7554/eLife.88514
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Analysis
To evaluate the overall performance of humans and monkeys during the CST, four quantities were 
calculated: success rate, correlation between hand and cursor position, hand-cursor lag, and hand/
cursor RMS ratio. For each individual, the quantities were calculated as the average across trials for 
each bin of ‍λ‍ values (bin size: 0.3, starting from ‍λ = 1.5‍).

The success rate was obtained as the percentage of successful trials within each ‍λ‍ bin. A psycho-
metric curve (a Gaussian cumulative distribution function) was then fitted to the success rate data as a 
function of ‍λ‍ to estimate ‍λc‍ (critical stability, where success rate was 50%):

	﻿‍
% Success = 50

[
1 − erf

(
λ− λc√

2σ

)]

‍�
(3)

where, ‘erf’ indicates the error function, and ‍σ‍ denotes the standard deviation of the Gaussian cumu-
lative. The correlation and lag quantities (Figure 2, B and C) were obtained by first cross-correlating 
the hand and cursor position trajectories in each trial, and then finding the peak correlation and the 
corresponding lag (Figure 2, see also Quick et al., 2018). The hand/cursor RMS ratio (Figure 2, D) 
was defined as the ratio of the root mean squared (RMS) value of hand position over the RMS value 
of the cursor position in each trial.

Finally, to perform the classification analysis used in Figure  7 and Figure  8, a Support Vector 
Machine method was applied to learn the two-class control objective labels. In order to build and train 
a classifier, we used ‘fitcsvm.m’ function in MATLAB, where synthetic data (RMS of cursor position and 
cursor velocity) was used as training set. To classify experimental data using the trained classifier, the 
MATLAB function ‘predict.m’ was used. Finally, the posterior probabilities over each classification (i.e. 
the confidence on classification) was calculated using the ‘fitPosterior.m’ function in MATLAB.

Optimal feedback control model
An optimal control model was used to build control agents that performed the CST with different 
control strategies. The model involved an optimal feedback controller that moved the hand, a point 
mass of M=1 kg, through a simple muscle-like actuator (Todorov, 2005; Todorov and Jordan, 2002). 
The muscle model was approximated by a first-order low-pass filter that generated forces on the hand 
in the lateral direction as in Equations 4; 5:

	﻿‍ τ Ḟ = −F + u‍� (4)

	﻿‍
p̈ = 1

M
F

‍�
(5)

where ‍F‍ is the actuator force acting on the hand, ‍τ ‍ is the time constant of the low-pass filter, ‍u‍ is the 
control input to the muscle, and ‍̈p‍ is the second derivative of the hand position. Combined with Equa-
tion 1, the model includes cursor position ‍x‍, hand position ‍P‍, and actuator force ‍F‍ as the states of the 
system. By taking the first derivative of Equation 1, the hand and cursor velocity are also included in 
the state space of the system:

	﻿‍ ẍ = λ
(
ẋ + ṗ

)
‍� (6)

Finally, by combining Equations 1; 6, the CST dynamics can be derived as follows:

	﻿‍ ẍ = λ2x + λ2p + λṗ‍� (7)

Note that by taking the higher derivative of CST dynamics in Equation 6, we practically made 
the cursor velocity ‍̇x‍ available to the controller as a state of the system, which allowed us to explore 
different control strategies directly related to the cursor velocity. This was done with the caveat that 
the initial conditions of the resultant CST dynamics in Equation 7 should always satisfy Equation 1.

In this case, the behavior of the system could be represented by the state vector, ‍x =
[
x, _x, p, _p, F

]
‍ , 

using the state-space form of the system dynamics as shown below:

	﻿‍ ẋ = Ax + Bu‍� (8)

where A and B represent the dynamics of the system, and u is the control input:

https://doi.org/10.7554/eLife.88514
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	﻿‍

A =




0 1 0 0 0

λ2 0 λ2 λ 0

0 0 0 1 0

0 0 0 0 1/M

0 0 0 0 −1/τ




B =
[

0 0 0 0 1/τ
]T

‍�

(9)

In order to implement the feedback controller, the state-space equations were first discretized 
using the time steps of ‍δ = 10‍ ms. Further, three noise terms were included in the system dynamics 
representing the motor additive noise ‍ξ‍, signal dependent noise ‍ε‍ and sensory additive noise ‍ω‍, 
according to the models of biological systems (Harris and Wolpert, 1998; Todorov, 2005). The resul-
tant equations of the system dynamics were presented as shown below:

	﻿‍

xt+1 = Adxt + Bd(1 + εtC)ut + ξt

yt = Hxt + ωt ‍�
(10)

where ‍εt‍ , ‍ξt‍, and ‍ωt‍ are zero-mean Gaussian noise term, ‍C‍ is the signal-dependent noise scalar, ‍yt‍ 
represents the sensory feedback, and matrix H determines the available sensory feedback from the 
vector of states. For our simulations, all the states were available as feedback, therefore, we consid-
ered ‍H = diag

([
1, 1, 1, 1, 1

])
‍ . The matrices ‍Ad‍ and ‍Bd‍ were modified according to Equation 9 for 

discrete-time representation of the system: ‍Ad = I + δA‍ and ‍Bd = δB‍, where ‍I ‍ was an identity matrix.
Given the overall dynamics of the system, the feedback controller aimed to calculate the optimal 

motor command ‍ut‍ based on the sensory feedback ‍yt‍ by minimizing the cost function ‍J ‍ (Todorov, 
2005):

	﻿‍

ut = argmin(J)

J =
n∑

t=1

(
xT

t Qxt + uT
t Uut

)
‍�

(11)

where ‍n‍ was the number of time samples throughout the movement, and ‍Q‍ and ‍U ‍ determined the 
contribution of state accuracy and effort in the cost function, respectively. In all simulations, ‍U = 10‍. The 
matrix ‍Q‍, however, was appropriately manipulated to implement different state-dependent control 
strategies (see below). Accordingly, the optimal control law was obtained in the form:

	﻿‍ ut = −Ltx̂t‍� (12)

where ‍Lt‍ was the optimal control gain that was solved recursively by minimizing the cost function ‍J ‍ 
(see equation 4.2 of Todorov, 2005 for detailed calculation of ‍Lt‍). Also, ‍̂xt‍ represented the estimated 
states of the system based on the provided feedback ‍yt‍ , which were obtained using a state estimator 
as shown below:

	﻿‍ x̂t+1 =
(
Ad − BdLt

)
x̂t + Kt

(
yt − Hx̂t

)
‍� (13)

Here, ‍Kt‍ was the filter gain matrix which was calculated in a recursive procedure along with the 
control gains (see equation 5.2 of Todorov, 2005).

Implementing position control
The aim of the Position Control strategy was to maintain the cursor at the center of the screen 
throughout the trial. This was implemented by penalizing the deviation of the cursor position ‍x‍ from 
the center. In this case, the matrix ‍Q‍ was set to ‍Q = diag

([
q, 0, 0, 0, 0, 0

])
‍, where ‍q ≫ 0‍ was a constant. 

As such, the cost of deviation from the center for the cursor position was dominant represented in the 
value ‍J ‍ of the cost function, making the regulation of cursor position at the center, the primary goal 
of control.

Implementing velocity control
The Velocity Control strategy aimed to keep the cursor still at any point within the boundaries of the 
workspace. In this case, upon deviation of the cursor from the center, the main goal was to bring 

https://doi.org/10.7554/eLife.88514
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the cursor to a stop regardless of the location. This was implemented through penalizing the cursor 
velocity ‍̇x‍ by setting the matrix ‍Q = diag

([
0, v, 0, 0, 0, 0

])
‍ , where ‍v ≫ 0‍ was a constant.

Simulations
Given a control strategy, the model generated 500 trials of CST for each level of task difficulty from 
‍λ = 1.5‍ to ‍λ = 7‍, with increments of ‍∆λ = 0.2‍. The parameters of the hand and the muscle model 
(Equations 4; 5) were fixed to ‍M = 1‍ kg and ‍τ = 0.06‍ s. A sensory delay of 50 ms was considered 
when simulating the task with the optimal feedback controller (Cluff et al., 2019; Todorov, 2005). To 
implement the delay, system augmentation was used by adding the states from the current time step 
with all the states from the 5 preceding time steps (Crevecoeur et al., 2019; Todorov, 2004). The 
signal-dependent noise terms were set to ‍εt ∼ N

(
0, 1

)
‍ and ‍C = 1.5‍. The motor noise was ‍ξt ∼ N

(
0,Σ

)
‍ 

, where ‍Σ = 0.4BBT ‍ . For each trial, the simulation started from the initial condition of ‍x = 0‍, and ran 
for 8 s. Only the first 6 s of each simulation were considered in the analysis for consistency with the 
experimental paradigm. The success or failure in each simulated trial was decided post-hoc, by deter-
mining whether the cursor position ‍x‍ exceeded the limits of the workspace (±10 cm from the center) 
within the 6 s duration of the trial.
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Appendix 1

Subject-to-subject variability of hand/cursor RMS ratio
In Figure 2, a seemingly deviant behavior was observed for the hand/cursor RMS ratio of monkey 
J compared to the other monkey and the human subjects. This could be due to subject-to-subject 
variability. Given that data from only two monkeys were available, we examined this possibility by 
presenting the individual hand/cursor RMS ratio for all individual human subjects. Appendix 1—
figure 1 shows that there was indeed variability across subjects, with some not exhibiting a clear 
trend with task difficulty. However, on average, the RMS ratio showed a slight decrease as trials grew 
more difficult, as was earlier shown in Figure 2.

Alternative metrics for inferring control objectives from behavior
We used two main metrics in our analysis of inferring the control objective from behavior based 
on cursor movement, namely, the mean and RMS of cursor position/velocity (Figures 5 and 6). In 
Figure 5, we demonstrated that the choice of control objective affected the correlation between 
cursor mean position and cursor mean velocity in the state space of cursor movement. As one of the 
reviewers observed, since the cursor mean velocity over a trial determined the cursor final position 
in that trial, one could interpret the correlation between cursor mean velocity and its mean position 
in terms of the autocorrelation function (acf) of cursor position.

In particular, under Position Control, the final cursor position would be relatively uncorrelated 
with the average position, and hence the temporal acf of position would be narrow. In contrast, 
under Velocity Control, the final position tends to be similar to the average position, and thus the 
acfwould be wider. We explored this insight by calculating the width of the acf of cursor position 
for 200 simulated trials at four different ‍λ‍ values for each control objective. Appendix 1—figure 
2A shows example cursor and hand traces, together with the corresponding cursor acf and its 
width (defined as the width of a rectangle with area equal to the area under the absolute value 
of the acf). In Appendix  1—figure 2B, the distribution of acf width across trials was compared 
between Position Control and Velocity Control for four example ‍λ‍ values. As expected, given the 
relation between mean and final position under the two control objectives, the distributions of acf 
widths separate between the two control objectives. As such, acf width could be another metric to 
dissociate between different control objectives. However, there was a similar overlap between the 
two objectives, resulting in similarly ‘undecided’ trials as the metrics we used.

Yet another alternative behavioral metric that could potentially differentiate between different 
control objectives is one that includes both hand and cursor movement, such as the hand/cursor 
RMS ratio. Appendix 1—figure 3 shows the distribution of hand/cursor RMS ratio across simulated 
trials, generated based on Position Control or Velocity Control for different ‍λ‍ values. As shown, this 
metric also demonstrated the separation of control objectives, albeit with dependence on ‍λ‍: as the 
task difficulty increased, the distributions began to converge, thereby becoming less distinguishable 
(this effect could also be observed in Figure 4A).

Overall, these alternative metrics also reflected the distinction between control objectives in 
behavior. While they did not offer any observable improvement over our previously used metrics 
(shown in Figures 5 and 6), it is possible that a more exhaustive examination of behavioral features 
could lead to metrics that better discriminate between control objectives. Such an investigation is 
beyond the scope of this study.

Sensitivity analysis of model parameters
We further investigated whether the distinction into two behavioral patterns could also be accounted 
for by changing other model parameters, specifically the relative cost of effort, motor noise, or sensory 
delay. To this end, we conducted a series of simulations wherein the control objective remained 
fixed at either Position or Velocity Control, but effort cost (U in Equation 2), noise magnitude (‍ϵ‍ in 
Equation 10) and sensory delay were varied independently.

We first examined whether changing the effort cost under a fixed control objective could account 
for the variability of behavior across groups in Experiment 2. For each control objective, the effort 
cost was varied between U=10, U=100, and U=1000, and the resulting change in behavior was 
examined. As shown in Appendix 1—figure 1A, the overall performance within a given control 
objective remained independent of effort cost. In particular, effort cost did not affect the distributions 
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of cursor mean (Appendix 1—figure 4B) and cursor RMS (Appendix 1—figure 4C), indicating that 
the distinctive patterns observed in Experiment 2 could not be explained solely by changing the 
effort penalty.

Changing the sensory delay time (from 30 ms to 70 ms; Appendix 1—figure 5) did impact the 
success rate at a given ‍λ‍, not unexpectedly. However, it did not affect the lag, correlation, RMS ratio, 
or the distributions of cursor mean and cursor RMS. Changing the level of motor noise (from 10% 
reduction to 10% increase in noise standard deviation; Appendix 1—figure 6) likewise impacted the 
success rate, but not the other metrics. Overall, these results demonstrated that different control 
behaviors in the data were predominantly explained by varying the control objective and not effort 
cost, noise level, or sensory delay.

Effect of task difficulty on control objectives
We examined whether and to what extent subjects used the same control objective in different task 
difficulty levels (‍λ‍ values). We only examined this question in subjects who were instructed to adopt 
a given objective, Position or Velocity Control. Figures 5–8 presented the data for an ensemble of 
‍λ‍ values, ranging up to the critical ‍λ‍ value (‍λc‍ ; associated with 50% success rate). Here, we replot 
Figure 5 by separating the trials into two clusters based on task difficulty, Easy, and Moderate ‍λ‍ 
values. The figure shows that the relative behavioral difference between the two control objectives 
remains qualitatively the same across difficulty levels. Specifically, Appendix 1—figure 7A shows 
the joint distribution of cursor mean velocity against cursor mean position for Easy (‍λ ≤ 70%λc‍), and 
Moderate (‍70%λcλ ≤ λc‍) conditions. The data are presented for two example subjects, S4 from the 
Position Control instruction group (brown) and S1 from the Velocity Control group (cyan). As shown, 
the structure of the data distribution remains approximately the same across Easy and Moderate 
difficulties, and this was also true with the model simulations (Appendix 1—figure 7B). Importantly, 
the relative structural difference between the two control objectives, quantified by the correlation 
coefficient between cursor velocity and cursor position R, remains unchanged across different 
difficulty levels as shown in Appendix 1—figure 7C. In all cases, R was larger for Velocity Control, 
indicating consistency in control objective across ‍λ‍ values.

The effect of time, or practice, on the control objective as subsumed in the analysis above 
because subjects performed the task progressing from easy to difficult trials: easy trials were 
performed early in the experiment, and they became increasingly more difficult towards the end 
of the experiment. To better examine the time course of possible changes in the control objective, 
we calculated the probability with which a given trial was performed under the Position Control 
objective. This probability was obtained from the classifier as applied to each trial. Appendix 1—
figure 8 shows this probability over the course of trials for each individual in each instruction group. 
As shown, though the trends were noisy, the probabilities remained generally higher for the Position 
Control group, and lower for the Velocity Control group as expected. Mainly, subjects’ performance 
generally remained within the bounds of their instructed control objective throughout the course of 
experiment.

Optimal control gains under different control objectives
The optimal feedback controller in our approach calculates the optimal gains that minimize the cost 
function (Equation 2) for a given control objective. The resulting control command was ‍u = −Lx‍ 
(Equation 12), where ‍x‍ was the state vector and ‍L‍ was the gain vector. Because the cost function 
depended on the control objective as well as the system dynamics (specifically, the value of ‍λ‍), the 
optimal position and velocity gains would likewise depend on ‍λ‍ as well as the control objective. 
Appendix 1—figure 9 illustrates the control gains for each cursor state for Position Control and 
Velocity Control across a range of ‍λ‍ values. As shown, the optimal gains under the same control 
objective varied with task difficulty, that is ‍λ‍. This indicates that as ‍λ‍ changes, the gains also needed 
to change in order to (optimally) meet the control objective. Importantly, the choice of control 
objective was strongly reflected in the cursor position gain, where the two control objectives showed 
opposing trends across task difficulties.

Perturbation simulations
To explore the potential for perturbation experiments to enhance the ability to discriminate 
between control objectives, we implemented a random cursor jump (left or right of screen center) 
at the start of each trial in 1000 simulation trials of Position Control and of Velocity Control over a 
range of difficulty levels. The magnitude of the cursor displacement was randomly sampled from a 
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normal distribution with zero mean (corresponding to screen center) and a standard deviation of 
1 cm. Appendix 1—figure 10A shows the simulation results for success rate, hand-cursor lag and 
correlation, and the hand/cursor RMS ratio. As shown, despite the similarity of the success rates for 
both control objectives, the other metrics showed more pronounced differences between the control 
objectives, compared to the unperturbed simulations (i.e., Figure 4). Interestingly, the difference was 
more systematic when looking at the cursor states in the mean or RMS spaces. Appendix 1—figure 
10B shows the joint distribution of cursor mean position and mean velocity, where the different 
control objectives showed opposite correlations between cursor position and velocity. Similarly, 
Appendix 1—figure 10C showed greater separation between the RMS distributions in Position and 
Velocity Control.

These simulations demonstrated the potential to more robustly differentiate between different 
control objectives at the behavioral level, and consequently allowed for clearer parsing of the neural 
data to search for neural correlates of control objectives. However, the experimental assessment of 
these predictions is left for future studies.
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Appendix 1—figure 1. Hand/Cursor RMS ratio for individual participants in all three groups (n=6 per group):. 
Top: No Instruction group, Middle: Position Control group, and Bottom: Velocity Control group. The error bars 
indicate the standard deviations (SD) across trials for each difficulty level.
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Appendix 1—figure 2. Autocorrelation analysis. (A) Sample trials with autocorrelation functions (acf) of cursor 
position shown for position control (columns 1 and 2), and velocity control objectives (columns 3 and 4). The 
dotted rectangle in the acf plots shows the acf width (see text for definition). (B) Histograms of the acf width shown 
for Position (brown) and Velocity (cyan) control objectives. Each panel shows the results for a different value of ‍λ‍ as 
indicated.
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Appendix 1—figure 3. Distribution of hand/cursor RMS ratio over trials, calculated for simulated trials under 
Position Control (brown) and Velocity Control (cyan), for different ‍λ‍ values.
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Appendix 1—figure 4. Effect of effort cost on control behavior represented by the (A) Aggregate performance 
measures, (B) Distribution of mean cursor movement, and (C) Distribution of RMS of cursor movement.
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Appendix 1—figure 5. Effect of sensory delay on control behavior represented by the (A) Aggregate performance 
measures, (B) Distribution of mean cursor movement, and (C) Distribution of RMS of cursor movement.
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Appendix 1—figure 6. Effect of changing motor noise (10% reduction to 10% increase) on control behavior 
represented by the (A) Aggregate performance measures, (B) Distribution of mean cursor movement, and (C) 
Distribution of RMS of cursor movement.
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Appendix 1—figure 7. Joint distributions of cursor mean position and cursor mean velocity, separated into 
two difficulty levels: Easy (‍λ‍ ≤ 70% ‍λc‍), Moderate (‍70%λc < λ ≤ λc‍). (A) Experimental data and (B) Model data. 
(C) Correlation coefficient R between cursor mean position and mean velocity for different difficulty levels, plotted 
for data (left) and model (right). The error bars indicate standard error across subjects for each control objective 
group (n=6 per group).
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Appendix 1—figure 8. Probability of each trial performed under Position Control for each individual and group 
(top: Position Control group; bottom: Velocity Control group).
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Appendix 1—figure 9. Optimal control gains corresponding to cursor position (left) and cursor velocity (right), 
obtained under Position Control (brown) and Velocity Control (cyan).
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Appendix 1—figure 10. Model simulations of the CST task when introducing perturbations (random cursor 
jumps) at the start of each trial. (A) Aggregate performance of success rate, hand/cursor lag, correlation and RMS 
ratio as a function of difficulty level, shown for each control objective (brown: Position Control; cyan: Velocity 
Control). (B) Joint distribution of cursor mean position and cursor mean velocity under different control objectives. 
(C) Distribution of cursor RMS position and RMS velocity under different control objectives.
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